正交矩阵&正交向量

正交矩阵是转置等于逆的特殊矩阵,其行列式为±1。当两个向量的内积为零时,它们是正交的,表示它们在几何上垂直。一组正交向量可以构成规范正交基,施密特算法用于求得这样的基。正交矩阵在向量空间的线性变换中扮演重要角色,保持向量间的夹角不变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正交矩阵

正交矩阵(Orthogonal Matrix)是指其转置等于其逆的矩阵。

  • AT=A-1
  • 如果A和B都是正交矩阵,并且它们阶数一样,那么AB也是正交矩阵
  • |A|= ± \pm ± 1

正交向量

  • 两个向量的内积如果是零, 那么就说这两个向量是正交的
  • 两个向量正交意味着它们是相互垂直的。若向量α与β正交,则记为α⊥β

向量内积

在这里插入图片描述

  • 两个向量的内积就等于两个向量对应各个维度的分量的乘积的和

我们通常把两个向量的内积写成
在这里插入图片描述

规范正交基

  • 如果向量组 e1,e2,…,er是向量空间V的一个基。
  • 如果它们之间彼此正交,那么就称它们是一组规范正交基。

施密特算法求规范正交基

向量空间V中的一组基是a1,a2,…,ar
在这里插入图片描述

单位化

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值