A - 区间选点 II
给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点
使用差分约束系统的解法解决这道题
Input
输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。
Output
输出一个整数表示最少选取的点的个数
Example Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Example Output
6
题意:
给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点
分析:
本题明确使用查分数组解决。记sum[i]表示数轴上[0, i]之间选点的个数,则对于第i个区间[ai,bi]需要满足sum[bi]−sum[ai−1]≥ci,为了保证sum有意义,还要满足0≤sum[i]−sum[i−1]≤1。综合的结果为sum[max{bi}]。
需要注意的是ai可以为0,所以整体数据应该正向偏移。
代码如下:
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
#include<string.h>
using namespace std;
const int inf = -1000000;
struct edge
{
int next, to, w;
};
edge e[1000010];
int head[50010];
int dis[50010];
bool vis[50010];
int tot;
int Max = 0, Min = 50010;
void add(int next, int to, int w)
{
e[++tot].to = to, e[tot].next = head[next], e[tot].w = w;
head[next] = tot;
}
void SPFA(int s)
{
queue<int> q;
int u, v;
q.push(s);
dis[s] = 0;
vis[s] = 1;
while (!q.empty())
{
u = q.front();
q.pop();
vis[u] = 0;
for (int i = head[u]; i != 0; i = e[i].next)
{
v = e[i].to;
if (dis[v] < dis[u] + e[i].w)
{
dis[v] = dis[u] + e[i].w;
if (!vis[v])
{
q.push(v);
vis[v] = 1;
}
}
}
}
}
int main()
{
int n;
int x, y, z;
cin >> n;
memset(head, 0, sizeof(head));
memset(vis, 0, sizeof(vis));
for (int i = 0; i < 50010; i++)
dis[i] = inf;
tot = 0;
for (int i = 0; i < n; i++)
{
cin >> x >> y >> z;
Max = max(Max, y);
Min = min(Min, x);
add(x - 1, y, z);
}
for (int i = Min; i <= Max; i++)
{
add(i - 1, i, 0);
add(i, i - 1, -1);
}
SPFA(Min - 1);
cout << dis[Max];
return 0;
}
B - 猫猫向前冲
众所周知, TT 是一位重度爱猫人士,他有一只神奇的魔法猫。
有一天,TT 在 B 站上观看猫猫的比赛。一共有 N 只猫猫,编号依次为1,2,3,…,N进行比赛。比赛结束后,Up 主会为所有的猫猫从前到后依次排名并发放爱吃的小鱼干。不幸的是,此时 TT 的电子设备遭到了宇宙射线的降智打击,一下子都连不上网了,自然也看不到最后的颁奖典礼。
不幸中的万幸,TT 的魔法猫将每场比赛的结果都记录了下来,现在他想编程序确定字典序最小的名次序列,请你帮帮他。
Input
输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示猫猫的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即编号为 P1 的猫猫赢了编号为 P2 的猫猫。
Output
给出一个符合要求的排名。输出时猫猫的编号之间有空格,最后一名后面没有空格!
其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。
Example Input
4 3
1 2
2 3
4 3
Example Output
1 2 4 3
题意:
根据胜负关系输出排名情况,如果有多种情况,数字小的先输出。
分析:
本题主要算法为拓扑排序。
构成图,若编号为a 的猫猫赢了编号为b 的猫猫,则a到b有一条边,并计算每个点的入度。先将入度为0的点进入优先队列p1,出队一个点并放入一个新的队列p2,就将它邻接的点的入度减1,并检测是否有点的入度为0,若为0,则入优先队列,再出队,重复上述过程,直到p1为空,将p2队列中存放着最后的名次按顺序输出即可。
代码如下:
#include<iostream>
#include<algorithm>
#include<queue>
#include<string.h>
using namespace std;
struct edge
{
int to, next, w;
};
edge e[250010];
int in[510];
int head[510];
int n, m, tot;
void add(int next, int to, int w)
{
e[++tot].to = to, e[tot].next = head[next], e[tot].w = w;
head[next] = tot;
}
int main()
{
int x, y;
while (cin >> n >> m)
{
memset(head, 0, sizeof(head));
memset(in, 0, sizeof(in));
tot = 0;
for (int i = 0; i < m; i++)
{
cin >> x >> y;
add(x, y, 1);
in[y]++;
}
priority_queue<int, vector<int>, greater<int> >q;
int u, v;
for (int i = 1; i <= n; i++)
if (in[i] == 0)
q.push(i);
vector<int> ans;
while (!q.empty())
{
u = q.top();
q.pop();
ans.push_back(u);
for (int i = head[u]; i != 0; i = e[i].next)
{
v = e[i].to;
in[v]--;
if (in[v] == 0)
q.push(v);
}
}
cout << ans[0];
for (int i = 1; i < ans.size(); i++)
cout << " " << ans[i];
cout << endl;
}
return 0;
}
C - 班长竞选
大学班级选班长,N 个同学均可以发表意见 若意见为 A B 则表示 A 认为 B 合适,意见具有传递性,即 A 认为 B 合适,B 认为 C 合适,则 A 也认为 C 合适 勤劳的 TT 收集了M条意见,想要知道最高票数,并给出一份候选人名单,即所有得票最多的同学,你能帮帮他吗?
Input
本题有多组数据。第一行 T 表示数据组数。每组数据开始有两个整数 N 和 M (2 <= n <= 5000, 0 <m <= 30000),接下来有 M 行包含两个整数 A 和 B(A != B) 表示 A 认为 B 合适。
Output
对于每组数据,第一行输出 “Case x: ”,x 表示数据的编号,从1开始,紧跟着是最高的票数。 接下来一行输出得票最多的同学的编号,用空格隔开,不忽略行末空格!
Example Input
2
4 3
3 2
2 0
2 1
3 3
1 0
2 1
0 2
Example Output
Case 1: 2
0 1
Case 2: 2
0 1 2
题意:
有若干个意见,意见具有传递性,输出得票最多的排行。
分析:
能到达某一点的前面的点数最多的点,即为的票数最多的人。先使用dfs求图中的连通分,然后跑反图,记录能到达的所有的连通分量的点的数量。
代码如下:
#include<iostream>
#include<algorithm>
#include<vector>
#include<set>
using namespace std;
vector<int> g1[5010], g2[5010], g3[5010];
vector<int> mem[5010];
int dfn[5020], c[5010], degree[5010], ans[5010];
int dcnt, scnt, maxn;
bool vis1[5010], vis2[5010];
set<int> a;
void init(int n)
{
for (int i = 0; i <= n; ++i)
{
g1[i].clear();
g2[i].clear();
g3[i].clear();
mem[i].clear();
c[i] = 0;
vis1[i] = false;
dfn[i] = 0;
degree[i] = 0;
ans[i] = 0;
}
dcnt = 0;
scnt = 0;
a.clear();
}
void dfs1(int x)
{
vis1[x] = 1;
for (int i = 0; i < g1[x].size(); ++i)
{
int v = g1[x][i];
if (!vis1[v])
dfs1(v);
}
dfn[dcnt++] = x;
}
void dfs2(int x)
{
c[x] = scnt;
for (int i = 0; i < g2[x].size(); ++i)
{
int v = g2[x][i];
if (c[v] == 0)
dfs2(v);
}
}
int dfs3(int x)
{
vis2[x] = 1;
int sum = mem[x].size();
for (int i = 0; i < g3[x].size(); ++i)
{
int v = g3[x][i];
if (!vis2[v])
sum += dfs3(v);
}
return sum;
}
void kosaraju(int n)
{
for (int i = 0; i < n; ++i)
{
if (!vis1[i])
dfs1(i);
}
for (int i = n - 1; i >= 0; --i)
{
if (c[dfn[i]] == 0)
{
scnt++;
dfs2(dfn[i]);
}
}
}
void scaling(int n)
{
for (int i = 0; i < n; ++i)
{
mem[c[i]].push_back(i);
for (int j = 0; j < g1[i].size(); ++j)
{
int v = g1[i][j];
if (c[i] != c[v])
{
g3[c[v]].push_back(c[i]);
degree[c[i]]++;
}
}
}
}
int main()
{
int T;
cin >> T;
for (int i = 1; i <= T; ++i)
{
maxn = -1;
int t = i;
int n, m;
cin >> n >> m;
init(n);
for (int j = 0; j < m; ++j)
{
int a, b;
cin >> a >> b;
g1[a].push_back(b);
g2[b].push_back(a);
}
kosaraju(n);
scaling(n);
for (int j = 1; j <= scnt; ++j)
{
if (degree[j] == 0)
{
for (int k = 1; k <= scnt; ++k)
vis2[k] = false;
ans[j] += dfs3(j) - 1;
if (maxn < ans[j])
maxn = ans[j];
}
}
for (int j = 1; j <= scnt; ++j)
{
if (ans[j] == maxn)
{
for (int k = 0; k < mem[j].size(); ++k)
a.insert(mem[j][k]);
}
}
cout << "Case " << t << ": " << maxn << endl;
for (set<int>::iterator j = a.begin(); j != a.end(); ++j)
{
if (j != a.begin())
cout << " ";
cout << *j;
}
cout << endl;
}
return 0;
}