LLM:badcase分析

bad case分析是了解业务、了解场景的重要途径,知道当前研究、实践中容易出现的问题,往通俗的说,吸收经验的重要途径。

分析badcase必须要先了解目前模型的效果,也就是baseline,知道该往哪个方向努力。

现状

评测集

要兼顾数量、统计意义、质量。

指标

指标的设计必须要考虑观测的目标。
注重指标的口径,比如不同数据源的情况。
多个指标的组合观测。

结论

确定预期的目标、进一步优化我们当前的算法方案的方向。

分析

分析的对象

根据优化算法的方面来观察不利于指标提升的badcase。

分析思路

粗看法

大体上去看,错误的样本都有什么特点,带有哪些特征,例如长度、句式等是否有什么特点。

追溯法

对一个case,重现整个训练和预测过程的方法。给定一个bad case,准备好日志,分析预测的每个阶段的分析结果,查看是否符合预期。

解决

样本的误导

增广数据

阈值的确定和权衡

不同的阈值得到的召回不一样

预处理

预处理的本质是对数据进行处理使之更好地被用来预测

前处理

指模型预测之前的处理,尤其在模型比较大,性能要求比较高的场景,我们需要把一些肯定确定能快速预测出来的东西给过滤掉,从而提升性能也降低模型的负担,最简单的例如黑白名单,复杂的可以有一些针对业务的规则,例如超短句或者超长句直接拒绝等等,能用规则的尽量用规则。

后处理

指在模型预测以后的一些调整,最直接能想到的就是阈值过滤,但不仅是这些,有的时候需要结合模型的预测打分进行调整

参考:
https://mp.weixin.qq.com/s/GUDVPL_7oZKKUtQZ2ZP4tA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灵海之森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值