FutureWarning: The module torch.distributed.launch is deprecated and will be removed in future.

本文指导如何在服务器上处理PyTorch警告,推荐使用新工具torchrun替代torch.distributed.launch,包括升级PyTorch版本、替换命令行及处理FutureWarning。
摘要由CSDN通过智能技术生成

在服务器上跑代码的时候有的时候会出现一系列的警告,虽然不是错误,但是看着也不舒服,于是就动手给他解决一下
要解决这个问题,需要使用torchrun来替代torch.distributed.launch。torchrun是一个新的工具,可以用于在分布式环境中运行PyTorch训练脚本。它已经默认设置了–use-env选项
1、首先要先确保pytorch版本是比较新的,可以使用以下命令升级PyTorch:这里一定要记住升级的时候你的torch版本要符合你的代码所使用的版本,否则不要满盲目更新。

pip install --upgrade torch

2、然后,将训练脚本中的torch.distributed.launch替换为torchrun。例如,如果原始命令如下

python -m torch.distributed.launch --nproc_per_node=2 train.py

将其修改为下面的命令:

python -m torch.distributed.run --use-env --nproc_per_node=2 train.py

如果出现下面的情况
在这里插入图片描述
将命令中的–use-env去掉,使用下面的命令:

python -m torch.distributed.run --nproc_per_node=2 train.py

3、保存并运行修改后的命令。
通过这些步骤,将能够解决FutureWarning并使用torchrun来替代torch.distributed.launch。

告知:需要学习YOLOv4进行TT100K数据集上中国交通标志识别的学员请前往(1) Ubuntu系统《YOLOv4目标检测实战:中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29362(2)《Windows版YOLOv4目标检测实战:中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29363在无人驾驶中,交通标志识别是一项重要的任务。本课程中的项目以美国交通标志数据集LISA为训练对象,采用YOLOv3目标检测方法实现实时交通标志识别。具体项目过程包括包括:安装Darknet、下载LISA交通标志数据集、数据集格式转换、修改配置文件、训练LISA数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。YOLOv3基于深度学习,可以实时地进行端到端的目标检测,以速度快见长。本课程将手把手地教大家使用YOLOv3实现交通标志的多目标检测。本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入学习和探究。除本课程《YOLOv3目标检测实战:交通标志识别》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括:《YOLOv3目标检测实战:训练自己的数据集》《YOLOv3目标检测:原理与源码解析》《YOLOv3目标检测:网络模型改进方法》另一门课程《YOLOv3目标检测实战:训练自己的数据集》主要是介绍如何训练自己标注的数据集。而本课程的区别主要在于学习对已标注数据集的格式转换,即把LISA数据集从csv格式转换成YOLOv3所需要的PASCAL VOC格式和YOLO格式。本课程提供数据集格式转换的Python代码。请大家关注以上课程,并选择学习。下图是使用YOLOv3进行交通标志识别的测试结果
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值