红色警报 并查集法

7-9 红色警报
战争中保持各个城市间的连通性非常重要。本题要求你编写一个报警程序,当失去一个城市导致国家被分裂为多个无法连通的区域时,就发出红色警报。注意:若该国本来就不完全连通,是分裂的k个区域,而失去一个城市并不改变其他城市之间的连通性,则不要发出警报。

输入格式:
输入在第一行给出两个整数N(0 < N ≤ 500)和M(≤ 5000),分别为城市个数(于是默认城市从0到N-1编号)和连接两城市的通路条数。随后M行,每行给出一条通路所连接的两个城市的编号,其间以1个空格分隔。在城市信息之后给出被攻占的信息,即一个正整数K和随后的K个被攻占的城市的编号。

注意:输入保证给出的被攻占的城市编号都是合法的且无重复,但并不保证给出的通路没有重复。

输出格式:
对每个被攻占的城市,如果它会改变整个国家的连通性,则输出Red Alert: City k is lost!,其中k是该城市的编号;否则只输出City k is lost.即可。如果该国失去了最后一个城市,则增加一行输出Game Over.。

输入样例:
5 4
0 1
1 3
3 0
0 4
5
1 2 0 4 3
输出样例:
City 1 is lost.
City 2 is lost.
Red Alert: City 0 is lost!`
City 4 is lost.
City 3 is lost.
Game Over.

先说一下并查集的思路,并查集最重要的是两段代码

int find_root(int x,int pre[])
{
	int x_root = x;
	while(pre[x_root] != x_root)
	{
		x_root = pre[x_root];
	}
	return x_root;
}

该函数是查找根节点,比如1的上级是2,2的上级是3,使用该函数后返回值就是3,查找过程1–>2–>3

int union_vertices(int x,int y, int pre[])\\这个函数是将不同的块连接在一起
{
	int x_root = find_root(x,pre);
	int y_root = find_root(y,pre);
	if(x_root == y_root) return 0;
	else
	{
		// 不考虑压缩路径的写法 
		pre[x_root] = pre[y_root];
		return 0;
	}
}

比如 1和2是一块 ,3是一块,使用union可以将1,2,3连在一起,这里先不考虑路径压缩

题目思路如下:使用二维数组记录哪两个城市有路,也可以使用结构体。首先使用并查集将所有城市分成几个集,实例中{0,1,3,4}是一个集,2是单独一个集,每输入一条路径,集就要更新。因为要判断国家的连接状态,使用sum来记录当前有几个集。接下来要考虑被攻占城市,使用vis[]数组来记录城市被攻占状态,当一个城市被攻占就要更新集,

for(int i=0;i<M;i++)
		{
			if(vis[load[i][0]] == 1 || vis[load[i][1]] == 1)
				continue;
			union_vertices(load[i][0],load[i][1],pre);
		}

每更新一次,当前集的个数可能会改变,因为一个城市已经被攻占了,按照实例,当城市1被攻占,那么城市0就孤立了,当前的集就会有3个,{0},{2},{1,3,4}。使用cnt来记录此时的集的个数。到这里程序大部分已经结束。接下来只要判断国家是否还有城市连接,有两种可能性:1.该城市本来就是属于一大块中的一份子,少了它份数并不会少 2.要么少了一个城市 这个城市本身就是独立的一块,即光杆司令,并不影响其他"大块"的连通性,少了它就会减少一块。判断游戏结束时,只要比较攻占城市数和城市数量即可。思路大致就是这样。

#include<iostream>
#include<algorithm>
using namespace std;
//查号根节点 
int find_root(int x,int pre[])
{
	int x_root = x;
	while(pre[x_root] != x_root)
	{
		x_root = pre[x_root];
	}
	return x_root;
}
//合并 
int union_vertices(int x,int y, int pre[])
{
	int x_root = find_root(x,pre);
	int y_root = find_root(y,pre);
	if(x_root == y_root) return 0;
	else
	{
		// 不考虑压缩路径的写法 
		pre[x_root] = pre[y_root];
		return 0;
	}
}
//初始化 
int intial(int N,int pre[])
{
	for(int i=0;i<N;i++)
	{
		pre[i]=i;
	}
}
int main()
{
	int N,M;
	scanf("%d %d",&N,&M);
	int pre[N];
	intial(N,pre);
	int load[M][2];
	for(int i=0;i<M;i++)
	{
		scanf("%d %d",&load[i][0],&load[i][1]);
		union_vertices(load[i][0],load[i][1],pre);
	}
	int K,temp,sum=0;
	for(int i=0;i<N;i++)
	{
		if(pre[i] == i)//sum表示被分成了几块区域,包括独立的城和有连接的城 
		sum++;
	}
	scanf("%d",&K);
	int vis[K]={0};//标记被攻占城市 
	for(int i=0;i<K;i++)
	{
		scanf("%d",&temp);
		vis[temp]=1;
		intial(N,pre);
		for(int i=0;i<M;i++)
		{
			if(vis[load[i][0]] == 1 || vis[load[i][1]] == 1)
				continue;
			union_vertices(load[i][0],load[i][1],pre);
		}
		int cnt=0;
	    for(int i=0;i<N;i++)//看看现在城市被占领后,城市分为几块
	    {
	    	if(pre[i] == i)//这一块,只剩自己并且自己就是自己的根 ,称之为“光杆司令 
	    	cnt++;
	    }
		if(cnt-1 == sum || cnt == sum)
		{
			printf("City %d is lost.\n",temp);
		}
		else
			printf("Red Alert: City %d is lost!\n",temp);//否则不连通
		sum=cnt;//更新当前被分成几块; 
	}
	if(K >= N) printf("Game over.\n"); 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值