AcWing 97. 约数之和—算数基本定理、递归

18 篇文章 0 订阅
13 篇文章 0 订阅

题目链接: AcWing 97. 约数之和
问题描述
在这里插入图片描述
分析
这道题的基础是约数的个数与和(基本算数定理求解)需要通过算数基本定理来解决问题,任何正整数 x x x的质因子为 p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1,p2,...,pn
那么 x x x的任何约数都能由 ( p 1 0 + p 1 1 , . . . . , p 1 a 1 ) ( p 2 0 + p 2 1 , . . . . , p 2 a 2 ) ∗ . . . ∗ ( p n 0 + p n 1 , . . . . , p n a n ) (p_1^0+p_1^1,....,p_1^{a_1})(p_2^0+p_2^1,....,p_2^{a_2})*...*(p_n^0+p_n^1,....,p_n^{a_n}) (p10+p11,....,p1a1)(p20+p21,....,p2a2)...(pn0+pn1,....,pnan)来表示,所以 x x x的所有约数之和就为 ( p 1 0 + p 1 1 , . . . . , p 1 a 1 ) ( p 2 0 + p 2 1 , . . . . , p 2 a 2 ) ∗ . . . ∗ ( p n 0 + p n 1 , . . . . , p n a n ) (p_1^0+p_1^1,....,p_1^{a_1})(p_2^0+p_2^1,....,p_2^{a_2})*...*(p_n^0+p_n^1,....,p_n^{a_n}) (p10+p11,....,p1a1)(p20+p21,....,p2a2)...(pn0+pn1,....,pnan),这道题种可以先将 A A A质因子分解,将质因子的指数再乘上 B B B,但是有个问题,这里的 B B B的范围较大,如果遍历算 ( p n 0 + p n 1 , . . . . , p n a n ) (p_n^0+p_n^1,....,p_n^{a_n}) (pn0+pn1,....,pnan)会超时,所有这里考虑用递归分治的方法来算 ( p n 0 + p n 1 , . . . . , p n a n ) (p_n^0+p_n^1,....,p_n^{a_n}) (pn0+pn1,....,pnan)
其实之前考虑的是用等比数列的公式 p n − 1 p − 1 %   m o d \frac{p^n-1}{p-1}\%\ mod p1pn1% mod和逆元来算,但是需要判断 p − 1 p-1 p1是否是mod的倍数,这种情况就比较麻烦,如果题目比较友好,直接用公式+逆元来算会更好一些。

那么现在的问题就变成了如何快速求 ( p n 0 + p n 1 , . . . . , p n a n ) (p_n^0+p_n^1,....,p_n^{a_n}) (pn0+pn1,....,pnan),这里的 a n a_n an很大,考虑用递归分治来做,
(1)若 a n a_n an为奇数,那么 p n 0 + p n 1 + . . . . + p n a n p_n^0+p_n^1+....+p_n^{a_n} pn0+pn1+....+pnan一共有a_n+1,为偶数项,
前一半为 p n 0 + p n 1 + . . . + p n a n − 1 2 p_n^0+p_n^1+...+p_n^{\frac{a_n-1}{2}} pn0+pn1+...+pn2an1
后一半为 p n a n + 1 2 + . . . + p n a n p_n^{\frac{a_n+1}{2}}+...+p_n^{a_n} pn2an+1+...+pnan
可以发现后一半每一项都是前一项对应位置的 p n a n + 1 2 p_n^{\frac{a_n+1}{2}} pn2an+1倍,因为 a n a_n an为奇数,我们把这个写成整除的形式就是 p n a n 2 + 1 p_n^{\frac{a_n}{2}+1} pn2an+1

get_sum(a,b)=get_sum(a,b/2)+a^(n/2+1)*get_sum(a,b/2)	
					=(ksm(a,b/2+1)+1)*get_sum(a,b/2)
get_sum(a,b)是求a^0+a^1+...+a^b
ksm是快速幂

(2)若 a n a_n an为奇数,那么可以求 p n a n p_n^{a_n} pnan+ ( p n 0 + p n 1 , . . . . , p n a n − 1 ) (p_n^0+p_n^1,....,p_n^{a_n-1}) (pn0+pn1,....,pnan1)这里 ( p n 0 + p n 1 , . . . . , p n a n − 1 ) (p_n^0+p_n^1,....,p_n^{a_n-1}) (pn0+pn1,....,pnan1)就变成了奇数项,可以按照(1)来求, p n a n p_n^{a_n} pnan用快速幂来求

get_sum(a,b)=ksm(a,b)+get_sum(a,b-1)

代码如下:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<unordered_map>
using namespace std;
const int mod=9901;
int ksm(int a,int b){
    int res=1;
    a%=mod;//a可能比较大a*a会爆int
    while(b){
        if(b&1) res=(res*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return res%mod;
}
int get_sum(int a,int b){
    if(b==0) return 1;
    if(b&1) return (ksm(a,b/2+1)+1)*get_sum(a,b/2)%mod;
    else return (ksm(a,b)+get_sum(a,b-1))%mod;
}
int main(){
    int a,b;
    cin>>a>>b;
    if(a==0) cout<<0;
    else if(b==0) cout<<1;
    else{
        unordered_map<int,int>mp;
        for(int i=2;i<=a/i;i++)
            while(a%i==0){
                mp[i]+=b;
                a/=i;
            }
        if(a>1) mp[a]+=b;
        int res=1;
        for(unordered_map<int,int>::iterator it=mp.begin();it!=mp.end();it++){
            res=(res*get_sum(it->first,it->second))%mod;

        }
        cout<<res;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chp的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值