AcWing 97. 约数之和—算数基本定理、递归

18 篇文章 0 订阅
13 篇文章 0 订阅
文章讨论了一种利用算数基本定理和质因数分解解决正整数约数和的问题。当指数较大时,通过递归分治和快速幂算法优化计算过程,避免超时。对于奇数指数的情况,分别处理偶数项和奇数项,利用整除关系优化计算。文章提供了一个C++代码示例来实现这一方法。
摘要由CSDN通过智能技术生成

题目链接: AcWing 97. 约数之和
问题描述
在这里插入图片描述
分析
这道题的基础是约数的个数与和(基本算数定理求解)需要通过算数基本定理来解决问题,任何正整数 x x x的质因子为 p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1,p2,...,pn
那么 x x x的任何约数都能由 ( p 1 0 + p 1 1 , . . . . , p 1 a 1 ) ( p 2 0 + p 2 1 , . . . . , p 2 a 2 ) ∗ . . . ∗ ( p n 0 + p n 1 , . . . . , p n a n ) (p_1^0+p_1^1,....,p_1^{a_1})(p_2^0+p_2^1,....,p_2^{a_2})*...*(p_n^0+p_n^1,....,p_n^{a_n}) (p10+p11,....,p1a1)(p20+p21,....,p2a2)...(pn0+pn1,....,pnan)来表示,所以 x x x的所有约数之和就为 ( p 1 0 + p 1 1 , . . . . , p 1 a 1 ) ( p 2 0 + p 2 1 , . . . . , p 2 a 2 ) ∗ . . . ∗ ( p n 0 + p n 1 , . . . . , p n a n ) (p_1^0+p_1^1,....,p_1^{a_1})(p_2^0+p_2^1,....,p_2^{a_2})*...*(p_n^0+p_n^1,....,p_n^{a_n}) (p10+p11,....,p1a1)(p20+p21,....,p2a2)...(pn0+pn1,....,pnan),这道题种可以先将 A A A质因子分解,将质因子的指数再乘上 B B B,但是有个问题,这里的 B B B的范围较大,如果遍历算 ( p n 0 + p n 1 , . . . . , p n a n ) (p_n^0+p_n^1,....,p_n^{a_n}) (pn0+pn1,....,pnan)会超时,所有这里考虑用递归分治的方法来算 ( p n 0 + p n 1 , . . . . , p n a n ) (p_n^0+p_n^1,....,p_n^{a_n}) (pn0+pn1,....,pnan)
其实之前考虑的是用等比数列的公式 p n − 1 p − 1 %   m o d \frac{p^n-1}{p-1}\%\ mod p1pn1% mod和逆元来算,但是需要判断 p − 1 p-1 p1是否是mod的倍数,这种情况就比较麻烦,如果题目比较友好,直接用公式+逆元来算会更好一些。

那么现在的问题就变成了如何快速求 ( p n 0 + p n 1 , . . . . , p n a n ) (p_n^0+p_n^1,....,p_n^{a_n}) (pn0+pn1,....,pnan),这里的 a n a_n an很大,考虑用递归分治来做,
(1)若 a n a_n an为奇数,那么 p n 0 + p n 1 + . . . . + p n a n p_n^0+p_n^1+....+p_n^{a_n} pn0+pn1+....+pnan一共有a_n+1,为偶数项,
前一半为 p n 0 + p n 1 + . . . + p n a n − 1 2 p_n^0+p_n^1+...+p_n^{\frac{a_n-1}{2}} pn0+pn1+...+pn2an1
后一半为 p n a n + 1 2 + . . . + p n a n p_n^{\frac{a_n+1}{2}}+...+p_n^{a_n} pn2an+1+...+pnan
可以发现后一半每一项都是前一项对应位置的 p n a n + 1 2 p_n^{\frac{a_n+1}{2}} pn2an+1倍,因为 a n a_n an为奇数,我们把这个写成整除的形式就是 p n a n 2 + 1 p_n^{\frac{a_n}{2}+1} pn2an+1

get_sum(a,b)=get_sum(a,b/2)+a^(n/2+1)*get_sum(a,b/2)	
					=(ksm(a,b/2+1)+1)*get_sum(a,b/2)
get_sum(a,b)是求a^0+a^1+...+a^b
ksm是快速幂

(2)若 a n a_n an为奇数,那么可以求 p n a n p_n^{a_n} pnan+ ( p n 0 + p n 1 , . . . . , p n a n − 1 ) (p_n^0+p_n^1,....,p_n^{a_n-1}) (pn0+pn1,....,pnan1)这里 ( p n 0 + p n 1 , . . . . , p n a n − 1 ) (p_n^0+p_n^1,....,p_n^{a_n-1}) (pn0+pn1,....,pnan1)就变成了奇数项,可以按照(1)来求, p n a n p_n^{a_n} pnan用快速幂来求

get_sum(a,b)=ksm(a,b)+get_sum(a,b-1)

代码如下:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<unordered_map>
using namespace std;
const int mod=9901;
int ksm(int a,int b){
    int res=1;
    a%=mod;//a可能比较大a*a会爆int
    while(b){
        if(b&1) res=(res*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return res%mod;
}
int get_sum(int a,int b){
    if(b==0) return 1;
    if(b&1) return (ksm(a,b/2+1)+1)*get_sum(a,b/2)%mod;
    else return (ksm(a,b)+get_sum(a,b-1))%mod;
}
int main(){
    int a,b;
    cin>>a>>b;
    if(a==0) cout<<0;
    else if(b==0) cout<<1;
    else{
        unordered_map<int,int>mp;
        for(int i=2;i<=a/i;i++)
            while(a%i==0){
                mp[i]+=b;
                a/=i;
            }
        if(a>1) mp[a]+=b;
        int res=1;
        for(unordered_map<int,int>::iterator it=mp.begin();it!=mp.end();it++){
            res=(res*get_sum(it->first,it->second))%mod;

        }
        cout<<res;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chp的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值