Adversarial Discriminative Domain Adaptation阅读笔记(详细)

快速导览

为什么采用这种形式

某日下午(2021.10.16)想着,看一篇论文,我在原文里面写注释和笔记,然后每次看完以后我都得把标注过的论文传到QQ或者微信里,这样方便下一台电脑接着看。这样刚开始好像没啥问题,可是时间长了,最新注释版本的论文也不知道放到哪里去了,也不知道哪个版本是最新的,那么为什么不放在网络的博客里面,这样既可以分享一下,还可以方便存储呢!

对这篇文章的态度

我会从我自己的角度,一个对迁移学习零基础入门的角度,阐释清楚这篇文章的整体结构和一些细节,包括专业术语、对比等等。

数据集和完成的任务

根据文章Introduction部分(第二页左侧倒数第七行),验证模型的数据集是 MNIST, USPS, and SVHN digits datasets。后面还说了为了检验ADDA跨形态检测能力,还用了NYUD dataset(RGB
and HHA encoded depth images as source and target domains respectively各自)

完成的任务有:在上述数据集上实现可视化的自适应结果,测试模型无监督下通过把目标分类器从RGB彩色图像转化为深度在减小更复杂的跨形态数据漂移带来的影响的方面的潜力

名词解释

阅读文献时难免遇到自己不懂的专业术语。我是初学者入门,不认识的还是太多了些。也希望这样能帮助和我一样的人能快速入门,也希望有精力的各位大佬们能接力下去。

标题
我给这篇文章起的中文标题是“对抗性区分域自适应”,Domain Adaptation是迁移学习算法。

Abstract部分(第一页):

名称含义位置
Domain Shift领域漂移数据集不同,数据分布也不同,如猪尾巴(很短)和马尾巴(很长),原因是因为样本数据分布和待预测样本的不一样第四行
Database Bias数据集偏差现有数据集总有某种/些因素被倚重,和domainshift一样导致判断失误第四行
tied weights权重共享,直接拿训练好的模型投入自己的使用,如拿白人的人脸识别模型去识别黑人的第十二行
GAN-based LossGAN的loss公式,核心是最大化判别器、最小化生成器的loss第十三行
untied weight sharing无约束权重共享,迁移时权重可以改变第十九行
domain-adversarial methods域对抗方法,这应该不是某个特定的术语,是统称的方法,思想类似GAN倒数五行

Introduction部分(第一、二页)

对于换页换侧换段的地方,会写出来,后面和它在同一页同一侧同一段的就不详细说明了。

名称含义位置
maximum mean discrepancy最大平均差异,具体原理见MMD介绍,作为最后的Loss函数去优化第二页左侧第四行
correlation distances相关距离=1-相关系数第五行
depth observation观察图像深度,确定彩色图像颜色数第五行

Related work部分(第二页右侧)

名称含义位置
domain invariance域的不变性,是拓扑学中的概念,证明两个拓扑空间同胚第三段倒数第四行
latent space隐空间,降维数据后学习其根本特征第二页最后一个词

3.1 Source and target mappings

名称含义位置
LeNet model辨别手写字符的神经网络,有卷积和pooling运算从input中提取出feature map第二段第八行
mapping consistency这里写出来是为了防止和consistent mapping搞混,原文表达的意思就是源和目标要映射到同一个空间第六段第三行
partial alignment部分对准,个人理解,举个例子说明:源图是黑白点位数字,目标图是彩色连续高清版,利用前者训练出的数字识别模型去做后者的识别,“alignment"原意"对齐”,这里指的应该是做mapping后的结果,也就是找出两类图像的"数字骨架"第六段第三行

3.2 Adversarial losses

名称含义位置
fixed-point properties暂不知第五页公式7下面
cross-entropy loss交叉熵损失函数,常用于分类问题,具体可参考:损失函数|交叉熵损失函数第五页公式8上面

4. Adversarial discriminative domain adaptation部分(第五页左侧下方)

名称含义位置
degenerate solution退化解,意思大致是可行的非唯一解第五页右侧第二段第六行
the inverted label GAN loss暂不知第五页公式9上方右侧

5. Experiments(第六页左侧)

名称含义位置
ReLU activation function线性整流,神经网络的激活函数第六页右侧第一段最后
Source Only没有做适应之前的模型Tabel 2第一个

重点语句分析(部分单词给出中文注释)

我自己的英文水平不算很高,有些单词还得加注中文,也许这也会给您省去查单词的时间。重点语句基本包含了文章对于模型的介绍,对于速度此文相信是莫有裨益。

Abstract部分(第一页)
1.对先前模型的批判(第9行):

Prior generative approaches show compelling引人入胜的 visualizations, but are not optimal on discriminative tasks and can be limited to smaller shifts. Prior discriminative approaches could handle larger domain shifts, but imposed tied weights 参数共享 on the model and did not exploit a GAN-based loss.

从这段话可以看出,文章中说的先前的模型有一下缺点:
(1)生成方法:可视化做得很好,但没有很好地优化判别任务,很容易受到小规模(领域)漂移的限制
(2)判别方法:能处理大规模领域漂移任务,但在模型里只是使用了权重共享

2.提出的模型的总体思路(第13行靠后):

We first outline a novel全新的 generalized framework for adversarial adaptation对抗性自适应, which subsumes归纳 recent state-of-the-art先进的 approaches as special cases, and we use this generalized概括性的 view to better relate与…联系起来 the prior approaches.

这段话写进摘要里应该不奇怪,虽然看上是在自夸,不过在摘要里也算正常了。

后面基本上就是开始说这个模型的特点和夸了——特点是结合了判别模型(discriminative modeling)、无约束权重共享(untied weight sharing)和GAN Loss。优点是比竞争性的域对抗方法更简单,在跨域字分析(各种奇怪的1、2、3、4)和跨形态物体分类比最前沿的无监督适应算法更有前景。

Introduction部分(第一、二页)
1.对领域漂移问题的传统解决方法和窘境:

The typical solution is to further fine-tune微调 these networks on task-specific datasets— however, it is often prohibitively difficult太过困难 and expensive to obtain enough labeled data to properly fine-tune the large number of parameters employed by deep multilayer networks.

参数既然不能直接拿来用,那当然是“微调”啦。可是这说着容易,想有足量的带标记数据去做微调(那差不多是重新学一遍了)还是太过于困难(迁移学习目标之一是利用训练好的模型去识别未标记的数据)。

2.介绍Adversarial adaptation的大概原理,和GAN类似:

Adversarial adaptation methods have become an increasingly popular incarnation化身 of this type of approach which seeks to minimize an approximate domain discrepancy差异 distance through an adversarial objective with respect to a domain discriminator关于域判别器的对抗目标(意思是最大化判别器的差异,这便是对抗性的含义).

3.介绍模型的总体流程

ADDA first learns a discriminative representation using the labels in the source domain and then a separate不同的 encoding that maps the target data to the same space using an asymmetric mapping learned through a domain-adversarial loss.

用在源域的标签学习一个判别模型,再用一个不同的编码方式,它能够利用非对称映射通过域对抗损失优化来把目标数据映射到同样的空间。(个人理解是想办法把猪尾巴弄成马尾巴)

这段话可以说是文章的主旨了,和第三页的流程图结合来看效果更佳:
ADDA流程图下面是原文对上图的说明:现有的对抗性适应方法是我们实现的框架的特例,根据特点不同,对上面深色方框中问题给出的选择也不同。

那么对于ADDA,这个模型的选择又是什么呢?从上面那段话应该是可以看出答案的!当然了,原文第四页的表格更是直接把答案贴出来了。
在这里插入图片描述
从上表中显而易见,ADDA在source和target的映射间选取的基模型是判别式的,采用无约束权值共享,对抗目标是GAN的loss

第四部分其中原句:

Specifically, we use a discriminative base model, unshared weights, and the standard GAN loss

Related work部分(第二、三页)
对几种GAN变种模型的比较后:

In this paper, we observe that modeling the image distributions is not strictly necessary to achieve domain adaptation, as long as the latent feature space is domain invariant

ADDA模型认为,要做到域适应,并不一定要对图像分布建模,因为隐空间是有域不变形的。

后面开始讲模型了,重点语句分析后面基本上没什么内容,但也讲了很多其他迁移学习模型的常见做法,还是值得一读的。

3.2 Adversarial losses(第四页右侧、第五页左侧)
1.表明模型里,source和target的映射是独立的,要学的只有 M M Mt

Note that, in this setting, we use independent mappings for source and target and learn only Mt adversarially.

4. Adversarial discriminative domain adaptation部分(第五页左侧下方)
1.根据原文介绍,这段在流程图下面解释的话说明了模型整体的训练流程(sequential training procedure)

首先:使用含标签的源图像训练编码源的卷积神经网络

然后:学习一个能使得判别器无法准确辨别域标签的编码目标的卷积神经网络(打个比方:现在有个判断动物是否有尾巴的模型,source是马,target是猪,这个网络就是希望把它们“尾巴”的共同特征找到,而不是把短尾当没有)

测试中:目标图像经目标编码器映射到共享特征空间并被源分类器分类。虚线表明这是固定的网络参数(意思是直接套用的)。

An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target encoder CNN such that 使得 a discriminator that sees encoded source and target examples cannot reliably 准确地 predict their domain label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source classifier. Dashed lines 虚线 indicate fixed network parameters.

在这里插入图片描述
其实类似的话在上文也提到过很多次,不过是拆分来说的,细节还在第四部分继续说。

2.关于上述流程中第二部的几个细节问题回答:
(1)为什么要无约束权值共享?这是一个灵活的学习模式,能学习到更多领域特征。

This is a more flexible learning paradigm 学习模式 as it allows more domain specific feature extraction to be learned

(2)为什么要保留一部分权值?有可能产生退化解。

The target domain has no label access, and thus without weight sharing a target model may quickly learn a degenerate solution 退化解

(3)怎么解决?把对source预训练出的模型作为target表达空间初始版本再通过训练去改进。

We use the pre-trained source model as an intitialization for the target representation space and fix the source model during adversarial training.

3.优化步骤:

We choose to optimize this objective in stages 分阶段. We begin by optimizing L c l s \mathcal{L}_{\mathrm{cls}} Lcls over M s M_s Ms and C C C by training, using the labeled source data, X s X_s Xs and Y s Y_s Ys. Because we have opted to leave M s M_s Ms fixed while learning M t M_t Mt, we can thus optimize L a d v D \mathcal{L}_{\mathrm{adv_D}} LadvD and L a d v M \mathcal{L}_{\mathrm{adv_M}} LadvM without revisiting the first objective term. A summary of this entire training process is provided in Figure 3.

5. Experiments(第六页左侧)
1.如何进行的实验:

We use the simple modified LeNet architecture provided in the Caffe source code. When training with ADDA, our adversarial discriminator consists of 3 fully connected layers: two layers with 500 hidden units followed by the final discriminator output. Each of the 500-unit layers uses a ReLU activation function.

符号标记和公式解读

首次出现位置的格式:(段落,行数)负数表示倒数第几行

3.Generalized adversarial adaptation(第三页)

名称含义首次出现位置
Xssource images源图像1,3
Ys源图像的标签1,3
ps(x,y)source domain distribution源域分布1,4
Xttarget images目标图像1,5
pt(x,y)target domain distribution目标域分布1,5
Mttarget representation目标模型1,7
Ct目标图像K分类器1,7
Mssource representation mapping1,-3
Cssource classifier1,-2
L L Ladv D _D D判别器的loss4,-2
L L Ladv M _M Madversarial mapping loss6,-1

公式位置表示(x,y):x=页数,y=0时表示在左侧,y=1时表示在右侧
先搞明白含义,把文章算法步骤搞懂后再来具体看是怎么算的

公式解释位置
C=Cs=Ct源图像和目标图像的映射分布差距很小,可以直接把源图像的分类器用到目标图像上3,2
在这里插入图片描述优化源分类器的standrad supervised loss3,2
在这里插入图片描述Domain Discriminator的loss,需要最大化保证它看不出来数据是来自source还是target3,2
在这里插入图片描述原文说明此为“Generic Formulation",意思就是总体实现的目标:最大化判别器的loss,最小化源和目标在映射之后的差异,最下面的意思是实现一个特定的映射结构3,2

3.1 Source and target mappings

符号名称含义首次出现位置
Mlssource images的l层的参数4,2
{l1,l2,…,ln}l=layer,第几层的意思4,3
公式解释首次出现位置
在这里插入图片描述整体的映射结构是每一层的映射结构组合在一起(原文用词constraints)4,1
在这里插入图片描述每一层的映射结构可以表示为该层的源或目标图像的计算参数4,2

3.2 Adversarial losses

公式解释出现位置
在这里插入图片描述adversarial mapping loss,判断映射的优劣5,1
在这里插入图片描述交叉熵损失的计算公式,D(Md(xd))表示分类器D把第d个样本xd映射为某个类的概率,Md含义和取 1 2 \frac{1}{2} 21的原因是label只有1/0,默认正确率取个一半5,1
在这里插入图片描述ADDA模型的无约束优化公式(unconstrained optimization),具体计算含义见下面公式解读部分5,2

公式计算含义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

无监督域自适应(Unsupervised Domain Adaptation)是指在目标域没有标注数据的情况下,利用源域和目标域的数据进行模型的训练,从而提高目标域上的预测性能。在这种情况下,源域和目标域可能存在一些不同,比如分布不同、标签不同等等,这些差异会影响模型在目标域上的泛化能力。因此,无监督域自适应的目标是通过训练模型来减少源域和目标域之间的差异,从而提高模型在目标域上的性能。无监督域自适应在计算机视觉等领域有着广泛的应用。 我非常有兴趣了解更多关于无监督领域适应的信息。 无监督域自适应是一种机器学习技术,旨在解决源域和目标域之间的分布差异问题,从而提高在目标域上的泛化能力。下面我将进一步介绍无监督域自适应的概念、方法和应用。 1. 无监督域自适应的概念 在无监督域自适应中,我们假设源域和目标域之间存在着一些潜在的相似性或共性,即源域和目标域之间的差异可以通过某种方式进行减少或消除。这种相似性或共性可以通过学习一个域适应模型来实现,该模型可以在源域上训练,并且可以通过无监督的方式进行目标域的训练。域适应模型通常采用深度神经网络等模型结构,通过最小化源域和目标域之间的距离或差异来学习域适应模型。 2. 无监督域自适应的方法 目前,无监督域自适应有很多方法,其中最常用的方法包括: (1) 最大均值差异(Maximum Mean Discrepancy,MMD)方法:该方法通过最小化源域和目标域之间的分布差异,从而学习一个域适应模型。 (2) 对抗性域适应(Adversarial Domain AdaptationADA)方法:该方法通过引入一个域分类器来判断数据来自源域还是目标域,并通过最小化分类器的误差来学习一个域适应模型。 (3) 自监督域自适应(Self-supervised Domain Adaptation,SSDA)方法:该方法通过利用目标域中的无标注数据,自动学习一个任务,然后通过该任务来学习一个域适应模型。 3. 无监督域自适应的应用 无监督域自适应在计算机视觉等领域有着广泛的应用。例如,在目标检测、图像分类、图像分割、人脸识别等任务中,无监督域自适应都可以用来提高模型的性能。另外,无监督域自适应还可以用来解决跨语种、跨领域的自然语言处理问题,例如机器翻译、文本分类等任务。 希望这些信息可以帮助你更好地了解无监督域自适应。非常感谢您提供的详细信息!这些信息对于我更好地理解无监督域自适应非常有帮助。我想请问一下,对于不同的无监督域自适应方法,它们的性能和适用场景有什么区别呢?无监督域自适应(unsupervised domain adaptation)指的是一种机器学习领域中的技术,它通过在不需要标记数据的情况下,将一个领域(source domain)的知识迁移到另一个领域(target domain)中。这种技术通常被用于解决在不同的领域之间存在分布差异(domain shift)时,如何训练出泛化能力强的模型的问题。在无监督域自适应中,模型只使用源领域中的标记数据进行训练,然后通过一些转换方法来将模型适应到目标领域中。这种技术的应用范围非常广泛,如自然语言处理、计算机视觉等领域。 我可以提供无监督的领域自适应,以更好地理解和处理不同领域的数据。无监督领域自适应(Unsupervised Domain Adaptation)指的是在没有目标域(target domain)标签的情况下,利用源域(source domain)标签和目标域的无标签数据来提高目标域上的泛化性能。在这种情况下,我们通常假设源域和目标域具有相同的特征空间和相似的分布,但是它们之间的边缘分布可能会有所不同。因此,无监督领域自适应的目标是通过学习一个映射函数,将源域和目标域之间的边缘分布对齐,从而提高目标域上的性能。无监督领域自适应(Unsupervised Domain Adaptation)指的是在源域(source domain)有标注数据但目标域(target domain)没有标注数据的情况下,将源域的知识迁移到目标域中,使得在目标域上的模型表现也能够得到提升的技术。在无监督领域自适应中,通常使用一些特殊的算法或者网络结构,使得模型能够自适应目标域的数据分布,从而达到更好的泛化性能。 我们正在研究无监督领域自适应,以改善机器学习系统的性能。无监督领域自适应(unsupervised domain adaptation)是指在目标领域没有标签数据的情况下,利用源领域的标签数据和目标领域的无标签数据,训练一个适应目标领域的模型的技术。该技术通常应用于机器学习和计算机视觉等领域中,用于解决在源领域训练出的模型不能直接应用到目标领域的问题。无监督领域自适应技术可以提高模型在目标领域的性能,同时也可以减少目标领域标注数据的需求。无监督领域自适应是指将一个模型从一个领域(source domain)迁移到另一个领域(target domain),而不需要在目标领域中使用标记的数据。这意味着,在目标领域中没有关于标签或类别的先验知识,只有一些未标记的样本可供使用。因此,无监督领域自适应是一种半监督学习方法,它使用标记数据从一个领域到另一个领域的知识转移来提高模型在目标领域中的性能。无监督领域自适应在实际应用中具有广泛的应用,例如在自然语言处理、计算机视觉和语音识别等领域。无监督域自适应(unsupervised domain adaptation)是指在源域和目标域数据分布不同的情况下,利用无标签的目标域数据来提升目标域上的学习性能的一种机器学习方法。在无监督域自适应中,通常假设源域和目标域具有相同的标签空间,但是它们的数据分布不同,因此需要通过特征对齐或领域自适应的方法来缓解这种分布偏移问题。无监督域自适应被广泛应用于计算机视觉、自然语言处理等领域,是解决实际应用中数据分布不匹配问题的有效手段之一。无监督领域适应(Unsupervised Domain Adaptation)是一种机器学习中的技术,旨在将在一个领域中学习到的知识迁移到另一个不同领域的情况下进行分类或回归。在无监督领域适应中,目标领域没有标注的标签信息,因此需要使用源领域和目标领域的无标签数据进行训练,以使得模型可以更好地适应目标领域的数据。无监督领域适应通常被应用于计算机视觉领域,例如将在城市场景下训练的模型应用于乡村场景。 我们可以使用无监督领域适应来解决这个问题,这是一种机器学习技术,它可以有效地将现有的模型应用于新的任务和新的领域中。无监督领域自适应(Unsupervised Domain Adaptation)是指在目标域没有标签信息的情况下,利用源域的有标签数据和目标域的无标签数据进行模型训练的技术。其主要目的是将源域的知识迁移到目标域中,从而提高目标域的分类或回归性能。无监督领域自适应在自然语言处理、计算机视觉等领域有广泛的应用。无监督域自适应(unsupervised domain adaptation)是指在源域有标注数据但目标域没有标注数据的情况下,利用源域数据自适应地改进目标域的学习效果。其目的是通过迁移学习,使得在源域上训练好的模型能够适应目标域上的数据,从而提高目标域上的性能表现。无监督域自适应是机器学习领域中的一个重要研究方向,应用广泛,例如在计算机视觉、自然语言处理等领域中都有应用。无监督域自适应(Unsupervised Domain Adaptation)是指在没有标签信息的情况下,将一个领域的数据适应到另一个领域的任务上。它通常用于解决机器学习中的迁移学习问题,即将一个领域中学习到的知识应用到另一个不同但相关的领域中。在无监督域自适应中,模型需要从源域中学习知识,并将其应用到目标域中,从而提高目标域上的性能。这种方法通常用于处理数据集标注不足或成本高昂的情况。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域没有标记数据的情况下,通过利用源域和目标域之间的相似性进行模型训练的一种机器学习技术。其目的是在不同的数据集上训练出具有相同或类似特征的模型,以适应不同的应用场景。无监督域自适应常用于计算机视觉、自然语言处理等领域。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域没有标注数据的情况下,通过学习源域数据和目标域数据之间的差异,将源域的知识迁移到目标域的任务中。在无监督域自适应中,没有人为给出目标域的标签信息,需要从目标域数据中自动学习出特征并进行分类等任务。这种方法在现实应用中具有很大的实用性,可以有效地减少人工标注数据的成本和时间。无监督域适应(Unsupervised Domain Adaptation)是指在目标域和源域数据分布不同的情况下,通过无需标注目标域数据的方式,使得模型能够在目标域上表现良好的技术。它通常应用于机器学习领域中的迁移学习问题,通过将源域的知识迁移到目标域上,从而提高目标域的学习效果。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域(target domain)没有标记数据的情况下,通过在源域(source domain)和目标域之间找到共同特征进行学习,使得源域的知识可以迁移至目标域的技术。其目的是为了提高目标域的性能,使得目标域的模型在未来的数据中表现更好。无监督域自适应是迁移学习(Transfer Learning)的一个重要领域,广泛应用于自然语言处理、计算机视觉等领域。 域自适应是一种技术,它可以让机器学习模型在没有标注数据的情况下从一个领域转移到另一个领域。它使机器学习模型能够从一个偏差的领域转移到另一个偏差的领域,从而提高性能。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域(Target Domain)没有标注数据的情况下,将源域(Source Domain)的知识迁移至目标域,使得在目标域上的模型性能得到提升的一种机器学习技术。这种技术通常用于解决训练数据不足或者不平衡的问题,能够帮助提高模型的泛化能力和适应性。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域数据没有标签的情况下,通过将源域数据的知识迁移到目标域,来提高目标域的分类性能的一种机器学习技术。这种技术在实际应用中非常有用,因为在许多情况下,收集和标记目标域数据都非常昂贵和困难,而源域数据已经存在并且可以用来训练模型。无监督域自适应(Unsupervised Domain Adaptation)是指在没有标签信息的情况下,通过将源域和目标域的数据进行转换和对齐,来提高目标域上的学习效果。通常情况下,源域和目标域的数据分布不同,因此在目标域上直接使用源域的模型会导致性能下降。无监督域自适应可以通过学习源域和目标域之间的共享特征来解决这个问题,从而提高模型在目标域上的泛化能力。无监督领域自适应(unsupervised domain adaptation)指的是在目标域数据没有标签的情况下,通过学习源域数据和目标域数据的差异,将源域的知识迁移到目标域的任务中,以提高模型在目标域的泛化能力。这是一种常见的迁移学习方法。无监督域自适应(Unsupervised Domain Adaptation)指的是在没有标注数据的情况下,将一个领域(source domain)的知识迁移到另一个领域(target domain)中,以提高模型的泛化性能。这种技术在许多机器学习应用中都非常有用,特别是在数据标注成本高、标注数据不足或者难以获取标注数据的情况下。无监督领域自适应(unsupervised domain adaptation)是指在没有目标领域标签数据的情况下,将源领域的知识迁移到目标领域的过程。它通常用于解决在目标领域缺乏标记数据的情况下,如何使用源领域的标记数据来提高模型性能的问题。无监督领域自适应技术包括多个领域适应方法,如深度域对抗网络(DANN)、最大平均差异(MMD)和相关分量分析(CORAL)等。无监督领域自适应(Unsupervised Domain Adaptation)是指在目标领域没有标注数据的情况下,通过利用源领域和目标领域的数据,使得模型在目标领域上的泛化能力更强。这是一个重要的问题,因为在实际应用中,很难获得大量的标注数据。因此,无监督领域自适应是一种有效的方法,可以在没有标注数据的情况下提高模型的性能。无监督域自适应(Unsupervised Domain Adaptation)是指在源域和目标域数据分布不同的情况下,通过不借助目标域的标签信息,仅利用源域数据和一些无标签的目标域数据,来提高目标域的分类性能的一种机器学习技术。在实际应用中,由于很难获取到大量无监督领域自适应(Unsupervised Domain Adaptation)是一种机器学习方法,旨在将从一个领域中收集的数据的知识应用到另一个领域中,而不需要显式的标签或监督信息。其目的是在不同的领域之间迁移学习知识,从而提高模型在目标领域的性能。这种方法在处理从源领域到目标领域之间存在差异的情况下很有用,如语音识别、图像识别和自然语言处理等领域。无监督域适应(Unsupervised Domain Adaptation)是指在没有标注数据的情况下,将源域和目标域之间的差异最小化,使得在目标域上的模型性能能够得到提升的一种机器学习技术。它主要应用于模型训练数据的标注成本较高或者标注数据不足的情况下,通过迁移源域知识来提高模型在目标域的泛化能力。 无监督域适应的目标是找到一个能够将源域和目标域之间的分布差异最小化的特征变换函数,使得在目标域上的模型性能能够得到提升。这个特征变换函数可以通过最小化源域和目标域之间的差异来学习得到。无监督域适应算法通常包括特征提取和特征对齐两个步骤,其中特征对齐是核心步骤,通过最小化源域和目标域之间的分布差异,将两个域的特征空间对齐。 无监督域适应是一种重要的机器学习技术,在自然语言处理、计算机视觉、语音识别等领域得到了广泛应用。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值