Separate to Adapt: Open Set Domain Adaptation via Progressive Separation论文笔记

本文介绍了分离适配(Separate to Adapt, STA)方法,这是一种解决开放集域适应问题的端到端框架。文章指出,传统方法在处理目标域中的未知类时可能造成负迁移。STA通过逐步分离已知类和未知类样本,同时加权它们对特征分布对齐的影响,从而改善性能。方法包括多二元分类器进行初步分离,细粒度分类器进行精确分离,以及加权对抗性适应。实验结果表明,STA在各种开放度设置下都能有效分离已知类和未知类,提高了目标域的分类准确性。" 105012076,8730928,中英文情感分析模型对比与实践,"['自然语言处理', '深度学习', '文本分类', '预训练模型', '机器学习']
摘要由CSDN通过智能技术生成

Separate to Adapt: Open Set Domain Adaptation via Progressive Separation论文笔记

Abstract

Domain adaptation问题在利用源域的标注数据为未标记的目标域学习准确的分类器方面已经有较大成功,但是Open Set Domain Adaptation问题中的目标域中存在未知类,而未知类所占的比例对解决问题的方案的性能影响很大。在源域与目标域对齐的时候,如果不将目标域中的未知类排除,会造成已知类与未知类的不匹配而形成负迁移。

本文提出分离适配(Separate to Adapt (STA)),一种端到端的开集域适配方法。这种方法采用由粗到细的加权机制逐步分离未知类和已知类的样本,同时加权它们对特征分布对齐的影响。

经过验证,该方法适用于目标域的各种开放类型且效果很好。

Introduction

背景

目前计算机视觉方面的提升大多数是得益于大量带注释的训练数据,而在实际的运用中这样的数据并不多。而不同领域的数据又来自不同的分布。领域差距可能导致模型在目标领域做出错误预测。而现有的领域适应方法无论是通过特征级还是像素级的分布匹配来弥补领域差距,其方法大都假设源域和目标域共享相同的标签,即封闭集域适应。

本文研究的背景是在开集域适应(OSDA)中,目标域拥有源域中所有的类,而且目标域中存在未知类。

image-20200828151112323

开集域适配的两个挑战

(1)减轻域间差异的影响

(2)未知类的存在可能会造成负迁移

已知处理OSDA问题的少数方法的缺陷:

迭代分配变换(Assign-and-Transform-Iteratively (ATI) ):使用一个基于距离的度量来迭代地标记未知样本

开集反向传播(Open Set Back-Propagation (OSBP) ):尝试解决源域中没有未知类的问题

两种方法都需要一些阈值超参数来区分已知类和未知类,而设置超参数还需要目标域类别的先验知识,而在现实中的开放性可能是变化比较大的,所以超参数难以选择,而且依赖于预定义超参数的方法需要大量的超参数选择工作

⭐作者的方法

文章提出分离适应( Separate to Adapt (STA)),在不同的开放程度下解决开集域适应问题。

作者使用域间对抗学习的框架,并且为源域中的分类器添加了一个类:unknown class。

目标域中的已知类与未知类的主要区别在于:目标域的已知类与源域的已知类区别仅在于分布偏移,而目标域的未知类与源域的未知类区别更大,既有域间隙,也有语义间隙

由此,作者开发了一个由粗到细的分离管道组成的渐进分离机制

第一步是用源数据训练多二元分类器,以估计目标域中的数据和每个源类之间的相似性

第二步中,我们选择相似度极高和极低的数据作为已知和未知类别的数据,并用它们训练细粒度二元分类器,对所有目标域样本进行精细分离

在这两个步骤之间迭代,并使用实例权重来拒绝对抗域适应中未知类的样本

image-20200828154437892

图中左边表示在进行了源数据训练多二元分类器之后,通过产生的初步权值来从目标域中区分出未知类。图中的虚线是二元分类器为每个类产生的决策边界

图中中间是训练细粒度二元分类器来得到更精确的权重,目标域中的已知类以及未知类都已经分离开来。

图中的右边表示经过最后的分布对齐,目标域中的共享类已经域源域的相应类别对齐。

Related Work

封闭域自适应(Closed Set Domain Adaptation)

封闭集域自适应方法寻求减轻由域差异带来的性能下降。典型的方法是最小化特征分布之间的距离

  • 深度自适应网络(Deep Adaptation Network (DAN) ):增加了自适应层,最小化分布的内核嵌入之间的最大平均差异(MMD)
  • 中心矩差异(Central Moment Discrepancy (CMD) ):通过仅匹配一阶和二阶矩同样实现了域自适应。
  • 剩余转移网络(Residual Transfer Network (RTN)):通过增加一个快捷连接和熵最小化标准来改进DAN
  • 联合适应网络(Joint Adaptation Network (JAN)):匹配源域和目标域的特征和标签的联合分布。
  • 领域对抗神经网络(Domain Adversarial Neural Network (DANN))、对抗性区分域适应(Adversarial Discriminative Domain Adaptation (ADDA)):使用领域鉴别器来区分两个领域,同时学习特征提取器来混淆领域对抗训练范例中的领域鉴别器
  • 条件域对抗网络(Conditional Domain Adversarial Network (CDAN)):通过匹配标签和特征的联合分布来改进DANN
开集识别(Open Set Recognition)

即如何能正确的区分已知类别并拒绝其它未知类别。

  • 1-vs-set模型:从边际距离描绘决策空间,开放集SVM分配概率分数以拒绝未知样本,进一步改进了紧凑的减少概率模型。
  • 引入OpenMax层:利用深层神经网络进行开集识别

在开放集识别场景中,存在不属于训练数据集中的类的离群值。然而,在开放集域自适应中,两个域的共享类中的目标样本和源样本进一步遵循不同的分布,使得任务更具挑战性。

开集域自适应(Open Set Domain Adaptation)

分配和变换迭代(Assign-and-Transform-Iteratively (ATI))利用每个目标域样本的特征和每个源类别的中心之间的距离来决定目标样本属于源类别之一还是未知类别。

开集反向传播(Open Set Back-Propagation (OSBP) ):训练特征生成器来衡量目标域的样本偏离预训练的阈值而被分为未知类的概率。在对抗训练框架中训练其特征提取器和分类器。

两种方法在开集的开放度变化很大的情况下会出现问题。

作者开发的分离适配网络(Separate to Adapt (STA) )不需要在已知类和未知类之间手动选择阈值参数。

Method

Open Set Domain Adaptation
基本的符号说明

D s = ( X i s , Y i s ) i = 1 n s D_s = {(X_i^s,Y_i^s)}^{n_s}_{i=1} Ds=(Xis,Yis)i=1ns表示源域的 n s n_s ns个有标注的数据; D t = { X j t } j = 1 n t D_t = \{ {X_j^t}\}^{n_t}_{j=1} Dt={ Xjt}j=1nt 表示 n t n_t nt个无标签的数据。

C s C_s Cs表示源域中的类别; C t C_t Ct表示目标域中的类别,而且 C s ⊂ C t C_s⊂C_t CsCt;而 C t / s C_{t/s} Ct/

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
“你只需要90000个参数即可适应光:一款轻量级的Transformer” Light:一款轻量级的Transformer是指在模型参数数量较少的情况下,实现了对光照的适应能力。一般来说,Transformer模型通常需要巨大的参数数量来实现高质量的自然语言处理任务。然而,对于特定的任务,比如对光照的适应,研究人员最近提出了一种轻量级的Transformer模型,只需要90000个参数即可实现。 这个模型的轻量级设计主要集中在两个方面:模型架构和参数数量。首先,模型架构方面,轻量级Transformer采用了一种精简的结构,去掉了一些传统Transformer中的冗余模块。其次,在参数数量方面,研究人员通过对参数维度和层数进行有效的优化,实现了模型的轻量化。因此,这个轻量级Transformer仅需要90000个参数,就能够达到对光照的适应能力。 这个轻量级Transformer的适应光照的能力主要体现在两个方面:特征提取和模型自适应。首先,在特征提取方面,轻量级Transformer能够从输入的光照图像中提取出有效的特征表示,用于后续的任务处理。其次,在模型自适应方面,轻量级Transformer能够动态地学习并调整网络参数,从而更好地适应不同光照条件下的输入数据,提高模型的性能。 总之,通过轻量级的设计和精简的参数数量,这个仅需要90000个参数的轻量级Transformer模型能够有效地适应光照。这种模型设计的优势在于在保持良好性能的同时,减少了模型的复杂性和计算资源的需求,为光照相关任务的研究和应用提供了一种新的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值