
垃圾分类
文章平均质量分 77
树莓派 垃圾分类
Jie_MSD
“Just remember you are bright, well educated and extremely fortunate. Use this natural leadership, take forward to help others wherever you are.”
展开
-
【树莓派4B实现垃圾分类】Chap.0 项目概述 Tensorflow 1.14.0+Keras: 2.2.0+Opencv: 3.4+Python: 3.6+Numpy:1.16【深度学习 招式
【树莓派4B实现垃圾分类】Chap.0 项目概述 Tensorflow 1.14.0+Keras: 2.2.0+Opencv: 3.4+Python: 3.6+Numpy:1.16【深度学习 招式篇】一、项目概述二、数据集一、项目概述简介:该垃圾分类项目主要在于对各种垃圾进行所属归类,本次项目采用keras深度学习框架搭建卷积神经网络模型实现图像分类,最终移植在树莓派上进行实时视频流的垃圾识别。前期:主要考虑PC端性能,并尽可能优化模型大小,训练可采用GPU,但调用模型测试的时候用CPU运行,测试原创 2021-06-04 14:23:30 · 1530 阅读 · 1 评论 -
【树莓派4B深度学习 垃圾分类】Chap.3 树莓派安装opencv并测试视频接口实时视频流的垃圾分类【深度学习 招式篇】
【树莓派4B深度学习 垃圾分类】Chap.3 树莓派安装opencv并测试视频接口实时视频流的垃圾分类【深度学习 招式篇】系统环境工程要求1.激活虚拟环境+进入代码+更改测试集路径2.安装必要的库3.电脑安装俩个文件4.将这俩个文件拷贝到树莓派上去5.在树莓派上安装这俩个文件之前先更新pip6.测试系统环境2020-08-20-raspios-buster-armhf-full工程要求opencv 3.4.6.271.激活虚拟环境+进入代码+更改测试集路径cd ~/Desktop/tf_pi原创 2021-05-14 11:15:03 · 4011 阅读 · 35 评论 -
【树莓派4B深度学习 垃圾分类】Chap.2 VGG16 & AlexNet 垃圾数据集图像分类,附带做好的project链接【深度学习 招式篇】
树莓派实现垃圾分类【深度学习图像识别】:keras+tensorflow1.把代码还有图片数据集集,用U盘拷到树莓派上。2.激活虚拟环境3.进入代码那里系统环境:2020-08-20-raspios-buster-armhf-full工程要求:Tensorflow 1.14.0 + Keras 2.2.4 + Python 3.71.把代码还有图片数据集集,用U盘拷到树莓派上。其实Filezilla这个FTP传输就很方便2.激活虚拟环境cd ~/Desktop/tf_pisource en原创 2021-05-14 10:31:05 · 2530 阅读 · 20 评论 -
【树莓派4B深度学习 垃圾分类】Chap.1 给树莓派配置keras+tensorflow【深度学习 招式篇】
树莓派实现垃圾分类【深度学习图像识别】:keras+tensorflow1.配置好ssh和vnc之后,换源:2.python虚拟环境配置3.安装tensorflow1.14.04.安装keras5.开始测试;import keras前面加import os就能忽略提示。系统环境:2020-08-20-raspios-buster-armhf-full工程要求:Tensorflow 1.14.0 + Keras 2.2.4 + Python 3.71.配置好ssh和vnc之后,换源:第一步,先备份源文原创 2021-03-14 09:17:08 · 5878 阅读 · 23 评论