卷积神经网络
卷积是指神经网络不是对每个像素的输入信息做处理,而是对图片上每小块像素区域做处理,这种做法加强了图片信息的连续性,使得神经网络能看到图形,而非一个点。同时也加深了神经网络对图片的理解。
具体来说,卷积神经网络有一个批量过滤器,持续不断的在图像上滚动收集图片中的信息,每次收集的信息只是图片中的一小块像素区域,然后把收集到的信息进行整理,此时整理的信息有了实际的呈现,比如此时的神经网络可以看到边缘的图片信息。然后以同样的步骤用批量过滤器扫过产生的边缘的信息,用这些信息总结出更高层的信息结构。最后将这些信息套入普通的全连接神经网络中进行分类 。
过滤器将长宽高为256*256*3 的图片长宽压缩,高升高。可以对输入图片有更深的理解。
将压缩增高的 信息放到普通的神经层上就可以对图片进行分类了。
在每次卷积时,神经层可能会无意的丢失一些信息,此时就要用到池化层pooling。
在卷积时,我们不压缩长宽,尽量保留更多信息,压缩的工作交给池化。这样的附加工作可以提高准确性。
结构为一般为
IMAGE
CONVOLOTION
MAX POOLING
CONVOLOTING
MAX POOLING
FULLY CONNECTED
FULLY CONNECTED
CLASSIFIER