题目
这里是引用
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2解释:有两种方法可以爬到楼顶。
1.1 阶 + 1 阶
2.2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1.1 阶 + 1 阶 + 1 阶
2.1 阶 + 2 阶
3.2 阶 + 1 阶
提示:
1 <= n <= 45
解题思路
普通递归方法:自顶向下
代码实现(Java)
class Solution {
public int climbStairs(int n) {
if(n==1) return 1;
else if(n==2) return 2;
else return (climbStairs(n-1)+climbStairs(n-2));
}
}
优化
此代码会超时,时间复杂度超过o(n^2)接着进行优化创建一个哈希表将每个n对应的次数存储进去。f(n-1)用到过一次,之后需要用到时直接调用哈希表中的f(n-1)。
哈希表的基本语法:https://blog.csdn.net/kuangd_1992/article/details/121669731
class Solution {
private Map<Integer,Integer> storeMap =new HashMap<>();//创建hash表
public int climbStairs(int n) {
if(n==1) return 1;
else if(n==2) return 2;
if(null!=storeMap.get(n)){
return storeMap.get(n);
}
else{
int result=(climbStairs(n-1)+climbStairs(n-2));
storeMap.put(n,result);//n阶台阶爬楼方法存入hash表中
return result;
}
}
}
非递归:自底向上
class Solution {
public int climbStairs(int n) {
if(n==1) return 1;
if(n==2) return 2;
int result=0;
int pre1=1;//存放n-2的值
int pre2=2;//存放n-1的值
for (int i=3;i<=n;i++){
result=pre1+pre2;
pre1=pre2;
pre2=result;
}
return result;
}
}