平均绝对标度误差 (MASE)

MASE(平均绝对标度误差)是一种评估预测模型精度的指标,尤其适用于间歇性需求产品的预测。它通过将单个序列或多个序列的预测误差与朴素方法的平均误差对比来计算。当数据展示趋势或季节性模式时,MASE能有效比较预测的准确性。计算涉及到真实值V(t)与预测值P(t)的差异,并在所有历史值不全相等的情况下避免无穷或未定义的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

某一数据点的平均绝对标度误差 (MASE) 是指由(上一期间)预测误差除以朴素法的平均预测误差所得的值。

MASE 非常适用于以下案例:

  • 比较单个序列和多个序列之间的预测精确度

  • 完成对含有间歇性需求的产品的预测(从不返回无限或未定义值,所有历史值相等时除外)

  • 数据显示趋势或季节模式时

按如下方式计算 MASE:

计算 MASE

其中按如下方式计算 q(t):

其中V(t)为t时刻的序列真实值,而P(t)表示t时刻的预测值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值