鲸鱼算法(WOA)优化xgboost的分类预测模型,多特征输入模型,WOA-xgboost分类预测。多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为mat

该文展示了如何运用XGBoost工具箱处理数据,首先从Excel文件中读取数据,然后将数据划分为训练集和测试集,进行归一化处理。接着,设置了模型参数,包括最大迭代次数、深度和学习率,为后续的智能算法和预测模型做准备。
摘要由CSDN通过智能技术生成

 

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  添加路径
addpath('xgboost_toolbox\')

%%  读取数据
res = xlsread('数据集.xlsx');

%% 划分训练集和测试集%
num_dim = size(res, 2) - 1;               % 特征维度
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)

P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);

P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

%%  数据转置
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  参数设置
fun = @getObjValue;                 % 目标函数
dim = 3;                            % 优化参数个数
lb  = [10, 005, 0.01];              % 优化参数目标下限(最大迭代次数,深度,学习率)

智能算法及其模型预测

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值