%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
% restoredefaultpath
%% 导入数据
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';
%% 划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);
%% 节点个数
inputnum = size(p_train, 1); % 输入层节点数
hiddennum = 15; % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
%% 构建网络
net = newff(p_train, t_train, hiddennum);
%% 设置训练参数
net.trainParam.epochs = 50; % 训练次数
net.trainParam.goal = 1e-4; % 目标误差
net.trainParam.lr = 0.01; % 学习率
net.trainParam.showWindow = 0; % 关闭窗口
%% 参数设置
fun = @getObjValue; % 目标函数
dim = inputnum * hiddennum + hiddennum * outputnum + ...
hiddennum + outputnum; % 优化参数个数
lb = -1 * ones(1, dim); % 优化参数目标下限
ub = 1 * ones(1, dim); % 优化参数目标上限
pop = 10; % 数量
Max_iteration = 20; % 最大迭代次数
%% 优化算法
[Best_score,Best_pos,curve] = ABC(pop, Max_iteration, lb, ub, dim, fun);
%% 把最优初始阀值权值赋予网络预测
w1 = Best_pos(1 : inputnum * hiddennum);
B1 = Best_pos(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = Best_pos(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum + hiddennum + hiddennum*outputnum);
智能算法及其模型预测