GEE使用哨兵2号影像无监督分类

本文介绍了如何利用GoogleEarthEngine(GEE)对COPERNICUS/S2_SR卫星影像进行去云处理,通过WekaK-means算法进行非监督学习,对选定区域(roi)内的植被覆盖进行聚类分析,生成具有高光谱分辨率的遥感图像和分类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文待补充
在这里插入图片描述

var classes = 5;
var scale = 10;
var numpixels = 5000;
var start = '2020-11-01'
var end = '2021-03-31'
var roi = ee.FeatureCollection('projects/a-flyllf0313/assets/dachang');

function maskS2clouds(image) {
  var qa = image.select('QA60');

  // Bits 10 and 11 are clouds and cirrus, respectively.
  var cloudBitMask = 1 << 10;
  var cirrusBitMask = 1 << 11;

  // Both flags should be set to zero, indicating clear conditions.
  var mask = qa.bitwiseAnd(cloudBitMask).eq(0)
      .and(qa.bitwiseAnd(cirrusBitMask).eq(0));

  return image.updateMask(mask).divide(10000);
}


// select images
var s2 = ee.ImageCollection('COPERNICUS/S2_SR');

var img = ee.Image(s2.filterBounds(roi)
                       .filterDate(start, end)
                       .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',20))
                       .map(maskS2clouds)
                       .mean()
                       .clip(roi));

var image = img.select('B2');
var image = image.addBands([img.select('B3'), img.select('B4'), img.select('B5'),
                            img.select('B6'), img.select('B7'), img.select('B8'),
                            img.select('B9')
                            ]);                          
                            
// sampling
var training = image.sample({
  region: roi,
  scale: scale,
  numPixels: numpixels
});



// select method
var clusterer = ee.Clusterer.wekaKMeans(classes).train(training);

var result = image.cluster(clusterer);



Map.centerObject(roi, 11);
Map.addLayer(image.clip(roi), {bands: ["B4", "B3", "B2"], min:0, max:0.25}, "raw_img");
Map.addLayer(result.randomVisualizer(), {}, 'clusters')

参考博文

【Earth Engine】基于GEE进行非监督学习

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海绵波波107

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值