土地分类——基于Sentinel-2多源遥感的无监督分类进行土地分类

本文介绍了如何使用Sentinel-2多源遥感数据进行无监督土地分类。通过辐射校正、大气校正、几何校正预处理数据,接着采用特征提取(如NDVI)和聚类算法(如K均值)进行分类。最后,通过聚类结果与土地类型对应,完成土地分类。无监督分类方法依赖于数据质量和算法,可能需要进一步验证和调整以提高精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

无监督分类是一种基于统计学方法的图像分类技术,不需要先验知识和训练样本,直接对图像进行分类。基于Sentinel-2多源遥感数据进行无监督分类可以实现对土地类型的划分。本教程主要的目的是通过多源遥感影像进行土地分类,这里主要的数据是哨兵2号数据,波段+纹理特征,灰度波段用的NDVI指数。

步骤如下:

1. 数据预处理:对Sentinel-2数据进行预处理,包括辐射校正、大气校正和几何校正等。

2. 特征提取:从预处理后的数据中提取有效的特征。可以使用常见的特征提取方法,例如主成分分析(PCA)或光谱指数计算(如NDVI、NDWI等)。

3. 聚类分析:使用聚类算法将图像像素分成不同的类别。常用的聚类算法包括K均值聚类、最大期望聚类等。聚类分析可以根据像素的相似性将其分配到不同的类别。

4. 类别标签分配:将聚类结果与土地类型进行对应,为每个类别分配一个土地类型标签。

5. 土地分类:根据类别标签,对整幅图像进行土地分类,确定每个像素的土地类型。

需要注意的是,无监督分类方法对于数据质量的要求较高,需要充分考虑光谱差异、空间差异和遥感图像的分辨率等因素。同时,由于缺乏监督信息,无监督分类结果可能存在一定的误差,需要进一步验证和调整。

此外,还可以结合有监

以下是一个简单的示例代码,用于在GEE中导入无人机遥感数据并提取光谱、指数、纹理树高特征,并使用特征融合随机森林分类器进行分类。 ```javascript // 导入无人机遥感数据 var img = ee.Image('your/image/path'); // 定义感兴趣区域 var roi = ee.Geometry.Rectangle([xmin, ymin, xmax, ymax]); // 裁剪图像 var clipped = img.clip(roi); // 提取光谱特征 var bands = clipped.bandNames(); var statistics = clipped.reduceRegion({ reducer: ee.Reducer.mean().combine(ee.Reducer.stdDev(), '', true), geometry: roi, scale: 1, maxPixels: 1e9 }); var features = ee.List([]); features = features.add(statistics.values(bands).flatten()); // 提取指数特征 var ndvi = clipped.normalizedDifference(['NIR', 'Red']); var ndwi = clipped.normalizedDifference(['NIR', 'SWIR']); var indexFeatures = ee.List([]); indexFeatures = indexFeatures.add(ndvi); indexFeatures = indexFeatures.add(ndwi); // 提取纹理特征 var glcm = clipped.glcmTexture({ size: 3 }); var textureFeatures = ee.List([]); textureFeatures = textureFeatures.add(glcm.select('contrast').reduceRegion({ reducer: ee.Reducer.mean(), geometry: roi, scale: 1, maxPixels: 1e9 }).get('contrast')); // 提取树高特征 var srtm = ee.Image('USGS/SRTMGL1_003'); var dem = srtm.select('elevation'); var treeHeight = dem.subtract(clipped.select('Elevation')); var treeHeightFeatures = ee.List([]); treeHeightFeatures = treeHeightFeatures.add(treeHeight.reduceRegion({ reducer: ee.Reducer.mean(), geometry: roi, scale: 1, maxPixels: 1e9 }).get('elevation')); // 合并所有特征 var allFeatures = features.cat(indexFeatures).cat(textureFeatures).cat(treeHeightFeatures); // 定义分类器训练数据集 var trainingData = ee.FeatureCollection('your/training/data/path'); // 训练特征融合随机森林分类器 var classifier = ee.Classifier.randomForest(10).setOutputMode('REGRESSION').train({ features: trainingData, classProperty: 'class', inputProperties: allFeatures }); // 对无人机遥感数据进行分类 var classified = clipped.classify(classifier); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值