GEE查看研究区哨兵2历史过境时间

本文介绍了如何通过源代码查询雄安新区Sentinel-2卫星影像的过境日期,并总结了时间规律。重点在于解释UTC时间与美国东部时间的关系,以及如何转换为中国的标准时间和夏令时。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源代码

查看雄安新区的哨兵2号历史过境时间,总结规律帮助外业规划时间

// 定义研究区域
var studyArea = ee.FeatureCollection('projects/a-flyllf0313/assets/xiongan')

// 定义 Sentinel-2 数据集
var sentinel2 = ee.ImageCollection('COPERNICUS/S2');

// 筛选出研究区域内的影像
var sentinel2InStudyArea = sentinel2.filterBounds(studyArea);

// 获取影像的日期并打印
sentinel2InStudyArea.aggregate_array('system:time_start').evaluate(function(dates) {
   for (var i = 0; i < dates.length; i++) {
    // 将时间戳转换为日期
    var date = new Date(dates[i]);
    // 打印日期
    print('Sentinel-2 Date in Study Area:', date);
   }
});

2023年底至今过境日期

在这里插入图片描述
在这里插入图片描述

总结

在雄安新区上方,重访时间3-5天。还发现这些影像基本都是凌晨3点拍的,对应中国时间如下:

Sentinel-2 影像的时间戳是以协调世界时 (UTC) 表示的,因此与美国时间有所不同。3点是 Sentinel-2 影像默认的时间戳,但这不一定是美国的 3 点。UTC 时间与美国东部时间 (EST) 相差 5 小时,在夏令时期间为 4 小时。

要将 Sentinel-2 影像的时间戳转换为美国东部时间,你可以根据需要添加或减去相应的小时数。例如,如果你需要将时间戳转换为美国东部夏令时时间,可以将时间戳加上 4 小时。
要将 Sentinel-2 影像的时间戳转换为中国时间,你可以将时间戳添加或减去相应的小时数,以将其调整为中国标准时间 (CST) 或中国夏令时时间 (CDT),具体取决于你所在的日期。

中国标准时间 (CST) 为 UTC+8,中国夏令时时间 (CDT) 为 UTC+8 或 UTC+9,具体取决于是否采用夏令时。
中国时间为11-12点左右,因此哨兵2成像时间基本都在雄安新区正午。

<think>好的,用户想比较GEE中使用Sentinel和Landsat 8数据计算植被覆盖度的结果,并求R&sup2;、MAE和RMSE。首先,我需要确定植被覆盖度的常用计算方法,比如像NDVI这样的指数。然后,用户可能需要知道如何在GEE中分别获取这两种数据源,并进行预处理,比如去云、大气校正等。接下来,计算各自的植被指数,可能还需要同步两种数据集的时间,或者选择同一时间段的数据进行比较。 然后,用户需要计算三个指标:R&sup2;、MAE、RMSE。这涉及到统计方法。在GEE中,可能需要将两种数据的结果进行配对,比如同一地理位置和时间的像元值,然后应用回归分析来计算R&sup2;。MAE和RMSE则需要计算预测值和参考值之间的差异,取绝对值和平方后的均值,再开根(对于RMSE)。 但用户可能没有明确说明参考数据是什么,这时候可能需要假设其中一种数据作为基准,或者使用地面实测数据作为参考。如果用户没有地面数据,可能需要用其中一种卫星数据作为基准,比如假设Landsat 8作为参考,比较Sentinel的结果,或者反过来。不过需要注意两种传感器的分辨率和过境时间的差异,可能需要做空间和时间的匹配。 另外,用户提到的引用文献[^2]中提到了动态世界产品中的土地覆盖数据,可能可以用来辅助验证,比如通过土地覆盖类型来分层验证植被覆盖度的准确性。不过用户的问题主要是比较两种卫星数据的结果,可能需要直接比较它们的植被指数,或者通过某种模型将植被指数转换为植被覆盖度,比如像像元二分模型。 具体步骤可能包括:1. 数据准备和预处理;2. 计算植被指数;3. 转换为植被覆盖度(如果需要);4. 数据配对;5. 统计指标计算。在GEE中,可能需要使用reduceRegion、join等操作来配对数据点,然后使用线性回归模块计算R&sup2;,以及MAE和RMSE的公式进行计算。 需要注意的是,Sentinel和Landsat 8的空间分辨率不同(Sentinel-2是10米,Landsat 8是30米),所以在比较前可能需要将Sentinel数据重采样到30米,或者使用更高精度的参考数据。此外,时间匹配也很重要,需要确保两幅影像的获取时间尽可能接近,以减少植被生长变化带来的误差。 最后,用户可能需要具体的代码示例来实现这些步骤,包括如何加载数据、处理、配对和计算指标。需要确保代码正确,并解释每一步的作用,帮助用户理解过程。</think>在Google Earth Engine中比较哨兵数据与Landsat 8数据的植被覆盖度计算结果,需按照以下步骤进行: ### 一、数据准备与预处理 1. **哨兵数据加载** 使用`COPERNICUS/S2_SR`数据集,进行云掩膜处理: ```javascript var s2 = ee.ImageCollection('COPERNICUS/S2_SR') .filterDate('2020-01-01', '2020-12-31') .filterBounds(roi) .map(function(image) { return image.updateMask(image.select('QA60').eq(0)); }); ``` 2. **Landsat 8数据加载** 使用`LANDSAT/LC08/C02/T1_L2`数据集,进行辐射校正与云掩膜: ```javascript var l8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2020-01-01', '0') .filterBounds(roi) .map(function(image) { return ee.Algorithms.Landsat.simpleComposite(image); }); ``` ### 二、植被指数计算 1. **NDVI计算公式** 哨兵数据: $$ \text{NDVI}_{\text{S2}} = \frac{B8 - B4}{B8 + B4} $$ Landsat 8数据: $$ \text{NDVI}_{\text{L8}} = \frac{SR_B5 - SR_B4}{SR_B5 + SR_B4} $$ 2. **植被覆盖度转换** 采用像元二分模型公式: $$ f = \frac{\text{NDVI} - \text{NDVI}_{\text{soil}}}{\text{NDVI}_{\text{veg}} - \text{NDVI}_{\text{soil}}} $$ 其中$\text{NDVI}_{\text{soil}}$取0.05,$\text{NDVI}_{\text{veg}}$取0.7 ### 三、精度验证方法 1. **数据配对** 通过时空匹配将两数据集对齐: ```javascript var joined = ee.Join.saveAll('matches') .apply({ primary: s2.select('NDVI'), secondary: l8.select('NDVI'), condition: ee.Filter.and( ee.Filter.maxDifference(24*3600*1000, 'system:time_start', null, 'system:time_start'), ee.Filter.intersects('.geo', null, '.geo') ) }); ``` 2. **统计指标计算** - **决策系数(R&sup2;)**: $$ R^2 = 1 - \frac{\sum(y_i - \hat{y}_i)^2}{\sum(y_i - \bar{y})^2} $$ - **平均绝对误差(MAE)**: $$ \text{MAE} = \frac{1}{n}\sum|y_i - \hat{y}_i| $$ - **均方根误差(RMSE)**: $$ \text{RMSE} = \sqrt{\frac{1}{n}\sum(y_i - \hat{y}_i)^2} $$ 3. **GEE实现代码** ```javascript var regression = ee.Reducer.linearRegression({ numX: 1, numY: 1 }); var fit = pairedData.select(['L8_NDVI','S2_NDVI']) .reduce(regression); var coefficients = fit.get('coefficients'); var errors = pairedData.map(function(image){ var pred = image.get('L8_NDVI').multiply(coefficients.get(0)).add(coefficients.get(1)); return image.set({ 'error': pred.subtract(image.get('S2_NDVI')), 'sq_error': pred.subtract(image.get('S2_NDVI')).pow(2) }); }); var mae = errors.aggregate_mean('error').abs(); var rmse = errors.aggregate_mean('sq_error').sqrt(); ``` ### 四、结果解读要点 1. 哨兵数据因10米分辨率能更好捕捉植被细节空间分布 2. Landsat 8因30米分辨率更适用于大范围区域分析 3. 时间同步误差需控制在±3天内
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海绵波波107

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值