简介
利用谷歌地球引擎的哨兵 1 号和哨兵 2 号数据自动监测地表水动态
对洪水进行动态监测对于水资源管理和灾害预防非常重要。 利用遥感技术获取多时地表水分布图有助于阐明水量扩大的趋势,以便迅速制定措施。 哨兵-1 号合成孔径雷达(SAR)观测数据的空间分辨率高、重访周期短、穿透云层能力强,因此特别适用于这项任务。 然而,由于数据采集和处理的巨大压力,从大量合成孔径雷达图像中快速、准确地绘制洪水地图仍然具有挑战性。因此,在本研究中,我们设计了一种基于谷歌地球引擎(GEE)云平台的新型 SAR 图像洪水自动测绘方法,该方法在大津方法的基础上进行了改进,解决了不符合双峰分布假说的图像造成的较高分割阈值问题。 此外,为了消除椒盐噪声造成的遗漏以及主要由低背向散射强度植被和山体阴影造成的误分类,我们构建了一种基于拓扑关系和 DSM(数字地表模型)局部搜索算法的算法。 所提出的方法对平原和山区地形的准确率分别达到 96.213% 和 98.611%,F1 分数分别为 0.87254 和 0.89298。 该方法利用 GEE 云平台提供的强大计算资源和丰富数据集,可用于大规模、长期和动态洪水监测。
亮点
- 针对洪水测绘提出了一种满足双峰分布假设的改进型 OTSU 阈值分割方法
- 提出了一种基于拓扑关系的算法和一种 DSM 局部搜索算法,以消除山体阴影和低反向散射强度植被造成的误分类
- 在谷歌地球引擎云平台的帮助