Python实现基于距离的离群点检测

文章探讨了使用IsolationForest和LOF算法进行离群点检测的效果,指出两者在不同场景下的局限性。接着,作者提出一种基于距离计算的新方法,通过计算每个点到最近k个点的距离之和,寻找最大差值来设定阈值,从而识别离群点。这种方法在处理某些情况时可能优于IsolationForest和LOF。
摘要由CSDN通过智能技术生成

问题

我有这么一些点,大概1300个左右。需要检测它的离群点。
在这里插入图片描述

如果我用IsolationForest(孤立森林来做),效果是这样(红色为离群点)
在这里插入图片描述
很明显,在低位维上,相对于一些基于距离的算法,Isolation Forest表现较差。
那接下换LOF
在这里插入图片描述
可以看到,LOF的表现比IsolationForest好很多,但仍旧不够完美,图右上角几个黄点没有被算作离群点。这是因为LOF对于不同密度区域之间的异常检测效果不佳。

那么有没有一种能以距离计算离群点的方法呢?

思路:

  1. 计算每个点距离其最近的k个点的距离并求和排序
  2. 对距离求差并找出相邻差值最大索引。这一步是边界,区分异常值和正常值
  3. 设置一个阈值T(我代码中没有设置),如果相邻差值最大的索引下的差值大于阈值T(避免出现没有离群点但分析出离群点的情况),将该索引后的点视为离群点,并将其从数据集中去除

离群点计算

import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors
from datetime import datetime

# 计算每个点距离其最近的k个点的距离
k = 6  #根据点数量来定
nbrs = NearestNeighbors(n_neighbors=k).fit(X)
distances, indices = nbrs.kneighbors(X)
nearest_distances = np.sort(distances[:, 1:], axis=1)

# 计算每个点距离最近k个点的距离之和
sum_distances = np.sum(nearest_distances, axis=1)

# 对距离求差并找出相邻差值最大的索引
diff = np.diff(np.sort(sum_distances))
max_diff_index = np.argmax(diff)

# 标记离群点
threshold = np.sort(sum_distances)[max_diff_index+1]
outliers = np.where(sum_distances > threshold)[0]


检测效果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值