情感识别数据online_shopping_10_cats

online_shopping_10_cats是包含10个类别、6万多条评论的数据集,用于情感分析。数据来源于多个电商平台,整理自多个原始资源,包括Excel和txt文件,已去重并整合为CSV格式。推荐用于情感/观点/评论倾向性分析。

online_shopping_10_cats 说明

  1. 下载地址: Github
  2. 数据概览: 10 个类别(书籍、平板、手机、水果、洗发水、热水器、蒙牛、衣服、计算机、酒店),共 6 万多条评论数据,正、负向评论各约 3 万条
  3. 推荐实验: 情感/观点/评论 倾向性分析
  4. 数据来源: 各电商平台,具体不详
  5. 原数据集: 中文情感分析语料中文情感分析语料库,网上搜集,具体作者、来源不详
  6. 加工处理:
    1. 将 2 份语料整合成 1 份语料
    2. 将原来零散的 excel, txt 文档,整合成 1 个 统一的 csv 文档
    3. 去重
    4. <
好的,我可以为您提供一些实现RNN的代码和使用online_shopping_10_cats数据集训练模型的指导。 首先,我们需要导入PyTorch库并加载数据集: ``` python import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader class OnlineShoppingDataset(Dataset): def __init__(self, data_path): self.data = [] with open(data_path, 'r', encoding='utf-8') as f: for line in f: label, text = line.strip().split('\t') self.data.append((text, int(label))) def __len__(self): return len(self.data) def __getitem__(self, index): text, label = self.data[index] return text, label train_dataset = OnlineShoppingDataset('train.txt') train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) ``` 然后,我们可以定义RNN模型: ``` python class RNN(nn.Module): def __init__(self, vocab_size, embedding_size, hidden_size, num_layers, num_classes): super(RNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_size) self.rnn = nn.RNN(input_size=embedding_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): x = self.embedding(x) out, hidden = self.rnn(x) out = out[:, -1, :] out = self.fc(out) return out ``` 在模型中,我们使用了一个嵌入层和一个RNN层,然后使用全连接层进行分类。在训练模型之前,我们还需要定义一些超参数: ``` python vocab_size = 5000 embedding_size = 100 hidden_size = 128 num_layers = 2 num_classes = 10 learning_rate = 0.001 num_epochs = 10 ``` 接下来,我们可以实例化模型和损失函数,并定义优化器: ``` python model = RNN(vocab_size, embedding_size, hidden_size, num_layers, num_classes) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) ``` 最后,我们可以开始训练模型: ``` python total_step = len(train_loader) for epoch in range(num_epochs): for i, (texts, labels) in enumerate(train_loader): texts = [text.split() for text in texts] texts = [[word_dict[word] if word in word_dict else 0 for word in text] for text in texts] texts = nn.utils.rnn.pad_sequence([torch.tensor(text) for text in texts], batch_first=True, padding_value=0) outputs = model(texts) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) ``` 在训练模型时,我们首先将文本转换为数字,并使用pad_sequence函数对文本进行填充。然后,我们计算模型的输出和损失,并使用反向传播更新模型参数。在每个epoch的结尾,我们会输出损失的平均值。 希望这些代码能够帮助您实现RNN并使用online_shopping_10_cats数据集训练模型。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值