很抱歉,根据您提供的数据无法直接给出完整的MATLAB代码。这段话提供了许多步骤,包括数据的处理、模型的建立和神经网络的训练,需要根据具体的情况进行编写。我可以为您提供一些参考:
1. 数据处理:将数据分为样本集和测试集,其中测试集为数据集编号为6,12,18...120的点共20个,样本集为剩余的100个点。可以使用MATLAB自带的randperm函数生成随机数来实现数据集划分。
2. 逆运动学求解:根据机器人的理论模型和关节角求解机器人的实际位姿。可以使用MATLAB自带的机器人工具箱Robotics System Toolbox中的函数来实现逆运动学求解。
3. 神经网络模型的建立:需要建立两个神经网络,分别用于预测末端的位置和姿态。可以使用MATLAB自带的神经网络工具箱Neural Network Toolbox来实现。
4. 神经网络的训练:使用样本集对神经网络进行训练,并使用测试集对网络的性能进行评价。可以使用MATLAB自带的trainlm函数来实现神经网络的训练。
根据以上步骤,您可以编写MATLAB代码来实现这一过程。以下是一些参考代码:
```matlab
% 数据处理
data = [380.75 190.112 26.48 60.4 68;
381.65 191.265 27.46 64.3 54.6;
356.56 186.36 28.53 64.2 54.3;
325.36 146.35 29.48 53.8 54.1;
354.61 184.55 31.48 42.3 65.8;
376.62 188.65 31.23 38.65 48.29;
375.65 186.35 22.48 39.14 36.95;
372.64 186.52 30.48 45.65 38.63;
376.21 178.61 34.53 38.55 39.42;
352.63 156.56 25.48 32.5 32.2;
269.46 153.54 36.47 75.1 88.3;
386.53 186.53 27.38 76.8 90.2;
383.65 165.56 32.36 73.5 83.6;
352.13 266.54 23.41 39.59 36.12;
356.36 256.45 29.42 31.3 37.73;
315.36 248.65 31.53 35.356 32.26;
265.34 213.26 42.48 30.2 38.4;
236.547 153.64 43.54 26.75 26.6;
363.35 251.69 34.42 21.4 20.4;
341.25 154.24 45.48 33.2 28.5];
% 划分数据集
test_idx = 6:6:120;
train_idx = setdiff(1:120, test_idx);
test_data = data(test_idx,:);
train_data = data(train_idx,:);
% 逆运动学求解
% 假设机器人模型已知,可以使用Robotics System Toolbox中的函数求解
% 以下代码仅供参考
% robot = robotics.RigidBodyTree;
% q = zeros(1,5);
% for i = 1:size(train_data,1)
% q(i,:) = inverseKinematics(robot, [train_data(i,1:3)], ...
% trvec2tform(train_data(i,4:6)), [pi/2,-pi/2,pi/2,0,0], ...
% [10,10,10,10,10], [0,0,0,0,0], struct('Tolerance',1e-6));
% end
% 神经网络模型的建立
% 以下代码仅供参考
% net_pos = feedforwardnet(10);
% net_orient = feedforwardnet(10);
% 神经网络的训练
% 根据数据集的划分,将样本集分为训练集、测试集和验证集
[trainInd,valInd,testInd] = divideblock(100,0.8,0.1,0.1);
X_train = train_data(trainInd,1:3)';
X_val = train_data(valInd,1:3)';
X_test = train_data(testInd,1:3)';
Y_pos_train = train_data(trainInd,4:6)';
Y_pos_val = train_data(valInd,4:6)';
Y_pos_test = train_data(testInd,4:6)';
Y_orient_train = train_data(trainInd,4:5)';
Y_orient_val = train_data(valInd,4:5)';
Y_orient_test = train_data(testInd,4:5)';
% 使用样本集对神经网络进行训练
% 以下代码仅供参考
% [net_pos,tr_pos] = train(net_pos,X_train,Y_pos_train);
% [net_orient,tr_orient] = train(net_orient,X_train,Y_orient_train);
% 使用测试集对网络的性能进行评价
% 以下代码仅供参考
% Y_pos_pred = net_pos(X_test);
% Y_orient_pred = net_orient(X_test);
% pos_mse = mse(Y_pos_pred - Y_pos_test);
% orient_mse = mse(Y_orient_pred - Y_orient_test);
```
请注意,以上代码仅供参考,需要根据您的具体情况进行修改和调整。