pytorch 图像前处理

记录一些常用的前处理,每次都重写也是很费劲。。


```python

import cv2
import numpy as np

# 不失真resize 在resize时加上黑边
def distortionless_resize(img_org,target_size = (320,320)):
    h,w = img_org.shape[:2]
    if h==w:
        new_img = cv2.resize(img_org,target_size)
    elif h>w:
        new_img = np.zeros((h,h,3),np.uint8)
        new_img[:,int((h-w)//2):int((h-w)//2+w),:]=img_org
        new_img = cv2.resize(new_img,target_size)

    else:
        new_img = np.zeros((w,w,3),np.uint8)
        new_img[int((w-h)//2):int((w-h)//2+h),:,:]=img_org
        new_img = cv2.resize(new_img,target_size)
    
    cv2.imwrite('test.jpg',new_img)
    return new_img
		
# 转为tensor
def img_numpy2tensor(img):
    img -= (104, 117, 123)
    img = img.transpose(2, 0, 1)
    img = torch.from_numpy(img).unsqueeze(0)
    img = img.to(device)
    return img

使用transform方法处理

import torchvision.transforms as transforms
import cv2
import numpy as np
# 使用transform
transform = transforms.Compose([transforms.ToTensor(),
								transforms.Normalize((0.5, 0.5, 0.5), (0.5,0.5, 0.5))])
def pre_deal(img):
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = transform(img)
    img = img.unsqueeze(0)
    return img		

加个后处理方法

使用gan生成图片后的保存代码

简版

import torchvision

torchvision.utils.save_image(img, imgPath,normalize=True)

如果没有vision
那就自己动手写个呗

import numpy as np
import cv2

...
#此处略去生成过程 假设img就是生成的图像 img shape = (3,256,256)
img = np.transpose(img,(1,2,0))
# (img/255 - mean) /std - 1 ???
# 如果使用了normalize
img = (img + 1) / 2.0 * 255.0
img = np.clip(img,0,255)
# torch 方法 img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
# 如果没有使用的话
# img *= 255
img.astype(np.uint8)

抄一个b乎上的代码

import torchvision.transforms as transforms
import cv2

img_path = "./panda.jpg"

train_transformer = transforms.Compose([
    transforms.ToPILImage(),
    transforms.Resize(256),
    # transforms.RandomResizedCrop(224,scale=(0.5,1.0)),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

##numpy.ndarray
img = cv2.imread(img_path)  # 读取图像
img1 = train_transformer(img)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值