初步了解 TensorFlow 如何实现指数衰减学习率

在训练神经网络时,需要设置学习率(leaming rate)来控制参数更新的速度,学习率决定了参数每次更新的幅度,如果幅度过大,那么可能导致参数在极优值的两侧来回移动,如果幅度过小,虽然能保证收敛性,但是这会大大降低优化速度。

为了解决设定学习率的问题,TensorFlow 提供了一种更加灵活的学习率设置方法——指数衰减法,通过指数衰减的学习率既可以让模型在训练的前期快速接近较优解,又可以保证模型在训练后期不会有太大的波动,从而更加接近局部最优

在 TensorFlow 中,tf.train.exponential_decay 函数实现了指数衰减学习率,通过这个函数,可以先使用较大的学习率来快速得到一个比较优的解,然后随着迭代的继续逐步减小学习率,使得模型在训练后期更加稳定
在这里插入图片描述
tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase, name) 函数会指数级地减小学习率,它实现了以下代码的功能:

# tf.train.exponential_decay 函数可以通过设置 staircase 参数选择不同的学习率衰减方式

# staircase 参数为 False(默认)时,选择连续衰减学习率:
decayed_learning_rate = learning_rate * math.pow(decay_rate, global_step / decay_steps)

# staircase 参数为 True 时,选择阶梯状衰减学习率:
decayed_learning_rate = learning_rate * math.pow(decay_rate, global_step // decay_steps)
  • decayed_leaming_rate:每一轮优化时使用的学习率;

  • leaming_rate:事先设定的初始学习率;

  • decay_rate:衰减系数;

  • global_step:当前训练的轮数;

  • decay_steps:衰减速度,通常代表了完整的使用一遍训练数据所需要的迭代轮数,这个迭代轮数也就是总训练样本数除以每一个 batch 中的训练样本数,比如训练数据集的大小为 128,每一个 batch 中样例的个数为 8,那么 decay_steps 就为 16;

  • staircase

    • staircase 参数设置为 True,使用阶梯状衰减学习率时,代码的含义是每完整地过完一遍训练数据即每训练 decay_steps 轮,学习率就减小一次,这可以使得训练数据集中的所有数据对模型训练有相等的作用;
    • staircase 参数设置为 False,使用连续的衰减学习率时,不同的训练数据有不同的学习率,而当学习率减小时,对应的训练数据对模型训练结果的影响也就小了。

接下来看一看 tf.train.exponential_decay 函数应用的两种形态(省略部分代码):

  • 第一种形态,global_step 作为变量被优化,在这种形态下,global_step 是变量,在 minimize 函数中传入 global_step 将自动更新 global_step 参数(global_step 每轮迭代自动加一),从而使得学习率也得到相应更新:
    import tensorflow as tf
     	 	.
    		.
    		.
    #设置学习率
    global_step = tf.Variable(tf.constant(0))
    learning_rate = tf.train.exponential_decay(0.01, global_step, 16, 0.96, staircase=True)
    #定义反向传播算法的优化方法
    train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy, global_step=global_step)
     	 	.
    		.
    		.
    #创建会话
    with tf.Session() as sess:
    	 	.
    		.
    		.
        for i in range(STEPS):
    	 	.
    		.
    		.
            #通过选取的样本训练神经网络并更新参数
            sess.run(train_step, feed_dict={x:X[start:end], y_:Y[start:end]})
            .
    		.
    		.
    
  • 第二种形态,global_step 作为占位被 feed,在这种形态下,global_step 是占位,在调用 sess.run(train_step) 时使用当前迭代的轮数 i 进行 feed:
    import tensorflow as tf
    	 	.
    		.
    		.
    #设置学习率	
    global_step = tf.placeholder(tf.float32, shape=())
    learning_rate = tf.train.exponential_decay(0.01, global_step, 16, 0.96, staircase=True)
    #定义反向传播算法的优化方法
    train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
    	 	.
    		.
    		.
    #创建会话
    with tf.Session() as sess:
    	 	.
    		.
    		.
        for i in range(STEPS):
    	 	.
    		.
    		.
            #通过选取的样本训练神经网络并更新参数
            sess.run(train_step, feed_dict={x:X[start:end], y_:Y[start:end], global_step:i})
    	 	.
    		.
    		.
    
### 回答1: 学习率衰减是指在训练神经网络时,随着训练的进行,逐渐降低学习率的过程。这样做的目的是为了让模型在训练初期快速收敛,而在训练后期避免过拟合。在TensorFlow 2.0中,可以通过使用tf.keras.optimizers中的learning_rate_scheduler来实现学习率衰减。常见的学习率衰减方法有Step Decay、Exponential Decay、Cosine Decay等。 ### 回答2: 学习率衰减是指在训练神经网络时,随着训练的进行,逐渐减小学习率的过程。在本文中,我们将介绍TensorFlow 2.0中学习率衰减的方法和实现TensorFlow 2.0中的学习率衰减有三种实现方式:时间衰减、余弦退火和指数衰减。其中,指数衰减是最常用的方法,因为它非常简单且易于调整,同时也有良好的效果。 指数衰减通过指数函数逐渐减小学习率,可以实现快速收敛和防止过拟合。具体实现方式为: ```python initial_learning_rate = 0.1 # 初始化学习率 decay_steps = 10000 # 衰减步数 decay_rate = 0.96 # 衰减率 step = tf.Variable(0, trainable=False) # 定义指数衰减函数 learning_rate = tf.compat.v1.train.exponential_decay(initial_learning_rate, step, decay_steps, decay_rate, staircase=True) # 定义优化器 optimizer = tf.keras.optimizers.SGD(learning_rate) ``` 在上述代码中,我们首先定义了初始学习率衰减步数和衰减率,然后通过指数衰减函数逐步减小学习率。最后,我们使用SGD优化器来训练模型。 除了指数衰减TensorFlow 2.0中还支持余弦退火和时间衰减。其中,余弦退火在训练初期较快地减小学习率,在接近最优解时较慢地减小学习率,从而有效地避免了局部最优解;时间衰减则类似于指数衰减,只是减小学习率的速度不同。 总之,在训练神经网络时使用学习率衰减可以加速收敛、防止过拟合和提高模型的泛化能力。TensorFlow 2.0中提供了三种学习率衰减实现方式,其中指数衰减是最常用的方法,也是最简单易用的方法。 ### 回答3: 学习率衰减是一种优化算法,它可以帮助更好地训练深度神经网络,并且可以提高模型的准确性和泛化能力。Tensorflow2.0提供了许多学习率衰减函数,可以在训练模型时轻松地应用它们。 学习率衰减可以理解为一种策略,它会随着训练的进行,逐渐减小模型参数的更新量。这是因为在初始训练阶段,学习率越大,模型参数更新越大,但随着训练的进行,参数更新越来越小,这样会使模型达到一个比较稳定的状态。如果学习率不改变,则可能会导致模型过拟合,并且训练时间可能会更长。 Tensorflow2.0提供了三种不同的学习率衰减方式:指数衰减、多项式衰减和余弦衰减。其中指数衰减方式是最常用的方法,它会通过一个指数函数来不断减小学习率,每次减小的程度也可以进行设置。多项式衰减方式会通过一个多项式函数来不断减小学习率,而余弦衰减则会根据余弦函数不断减小学习率学习率衰减不仅可以提高模型的准确性和泛化能力,还可以在遇到局部极小值时,帮助模型跳出局部极小值,更快地找到全局最优解。在使用学习率衰减时,需要注意一些常见的问题,例如衰减率、衰减周期、起始学习率等等。这些参数需要根据具体情况进行设置,以获得更好的训练效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值