为什么刚度阵对称?根本原因在于物理方程。知识点:矩阵微积分,物理方程

本文探讨了刚度矩阵在弹性力学中的对称性,并指出仅依赖张量理论的简单推导并不充分。作者强调了物理方程在保持刚度矩阵对称性中的关键作用,通过《弹性力学》中的变分法阐述了这一概念。同时,提到了在非线性情况下刚度矩阵可能失去对称性的现象。博客中还提供了个人笔记链接,深入解析了相关数学推导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
为什么刚度阵对称?根本原因就是以上的物理方程。当物理方程发生变化,刚度阵便不一定能对称。例如下面链接里提到的非线性情况,
https://www.zhihu.com/question/398632114
在这里插入图片描述

我对市面上现有教材的意见

大多数书上会这样描述刚度阵对称的原因:
在这里插入图片描述
其中W为应变能的密度。
但是,以上的式子实际是不充分的证明,式子本身没有错,但是没有写出关键的过程。
如果仅按照张量理论,即在忽略 ε 与 σ 的 关 系 \varepsilon与\sigma的关系 εσ的状况下直接去计算应变能密度对应变的混合偏导,无论是先对 ε i 还 是 ε j 求 偏 导 , 最 后 的 结 果 都 是 1 2 C i j + 1 2 C j i \varepsilon_i还是\varepsilon_j求偏导,最后的结果都是\frac{1}{2}C_{ij}+\frac{1}{2}C_{ji} εiεj21Cij+21Cji。具体过程可以见我的github笔记(有专门针对矩阵求导的笔记)。
但是,如果考虑了物理方程,情况截然不同。我们直接有 ∂ W ∂ ε i = σ i \frac{\partial W}{\partial \varepsilon_{i}}= \sigma_{i} εiW=σi
这是通过物理方程,将W写成完全以应变分量为自变量的形式再求偏导得到的。依据:
在这里插入图片描述来自《弹性力学》徐芝纶第十一章《变分法》。之后,由
σ i = C i j ε j \sigma_{i}=C_{ij}\varepsilon_{j} σi=Cijεj

方可以得到刚刚教材中的:
在这里插入图片描述替换一下角标就能得到
在这里插入图片描述
我的有关解决这个问题的笔记链接:
https://github.com/BraveDrXuTF/WhyCisSYMMETRIC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值