为什么刚度阵对称?根本原因就是以上的物理方程。当物理方程发生变化,刚度阵便不一定能对称。例如下面链接里提到的非线性情况,
https://www.zhihu.com/question/398632114
我对市面上现有教材的意见
大多数书上会这样描述刚度阵对称的原因:
其中W为应变能的密度。
但是,以上的式子实际是不充分的证明,式子本身没有错,但是没有写出关键的过程。
如果仅按照张量理论,即在忽略
ε
与
σ
的
关
系
\varepsilon与\sigma的关系
ε与σ的关系的状况下直接去计算应变能密度对应变的混合偏导,无论是先对
ε
i
还
是
ε
j
求
偏
导
,
最
后
的
结
果
都
是
1
2
C
i
j
+
1
2
C
j
i
\varepsilon_i还是\varepsilon_j求偏导,最后的结果都是\frac{1}{2}C_{ij}+\frac{1}{2}C_{ji}
εi还是εj求偏导,最后的结果都是21Cij+21Cji。具体过程可以见我的github笔记(有专门针对矩阵求导的笔记)。
但是,如果考虑了物理方程,情况截然不同。我们直接有
∂
W
∂
ε
i
=
σ
i
\frac{\partial W}{\partial \varepsilon_{i}}= \sigma_{i}
∂εi∂W=σi
这是通过物理方程,将W写成完全以应变分量为自变量的形式再求偏导得到的。依据:
来自《弹性力学》徐芝纶第十一章《变分法》。之后,由
σ
i
=
C
i
j
ε
j
\sigma_{i}=C_{ij}\varepsilon_{j}
σi=Cijεj
方可以得到刚刚教材中的:
替换一下角标就能得到
我的有关解决这个问题的笔记链接:
https://github.com/BraveDrXuTF/WhyCisSYMMETRIC