手撕堆&堆排序

实现一个降序堆

class Heap {
    int arr[];
    int size;
    public Heap(int[] arr) {
        this.arr = arr;
        this.size = arr.length;
        this.buildHeap();
    }
    void buildHeap() {
        for (int i = this.size / 2 - 1; i >= 0; i--) {
            heapify(i);
        }
    }
    void heapify(int root_index){
        int max_index = root_index;
        int left_child_index = 2 * root_index + 1;
        int right_child_index = 2 * root_index + 2;
        if (left_child_index < size && arr[left_child_index] > arr[max_index]) {
            max_index = left_child_index;
        }
        if (right_child_index < size && arr[right_child_index] > arr[max_index]) {
            max_index = right_child_index;
        }
        if (max_index != root_index) {
            swap(arr, root_index, max_index);
            heapify(max_index); // 正确的位置
        }
    }
    void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
    int getSize() {
        return size;
    }
    int getMaxValue() {
        if (size <= 0) return Integer.MIN_VALUE;  // 边界条件检查
        int max = arr[0];  // 最大值存到堆顶元素
        arr[0] = arr[size - 1];  // 最小值移到堆顶,最大值移到最后
        size--;  // 堆大小-1,删除最大的值
        heapify(0);  // 再次从堆顶开始调整堆
        return max;
    }
}
class heapsort{
    public static void main(String[] args) {
        int[] num = {1,3,15,-1,3,4,25};
        Heap h = new Heap(num);
        int[] res = new int[num.length];
        for (int i = 0; i < res.length; i++) {
            res[i] = h.getMaxValue();
        }
    }
}

补充一个实现升序堆(力扣912的排序是要求升序的)
排序数组

class Solution {
    public int[] sortArray(int[] nums) {
        Heap h = new Heap(nums);
        int[] res = new int[nums.length];
        for (int i = 0; i < res.length; i++) {
            res[i] = h.getMinValue();
        }
        return res;
    }
}
class Heap {
    int[] arr;
    int size;
    public Heap(int[] arr) {
        this.arr = arr;
        this.size = arr.length;
        this.buildHeap();
    }
    void buildHeap() {
        for(int i = this.size/2 - 1; i >= 0; i--) {
            heapify(i);
        }
    }
    void heapify(int root_index) {
        int min_index = root_index;
        int left_child = root_index * 2 + 1;
        int right_child = root_index * 2 + 2;
        if (left_child < size && arr[left_child] < arr[min_index]) {
            min_index = left_child;
        }
        if (right_child < size && arr[right_child] < arr[min_index]) {
            min_index = right_child;
        }
        if (min_index != root_index) {
            swap(arr, root_index, min_index);
            heapify(min_index);
        }
    }
    void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
    int getMinValue() {
        if (size <= 0) return Integer.MIN_VALUE;
        int min = arr[0];
        arr[0] = arr[size - 1];
        size--;
        heapify(0);
        return min;
    }
    int getSize() {
        return size;
    }
}
### 回答1: 当然可以,下面是一个Python实现的堆排序的示例代码: ```python def heapify(arr, n, i): largest = i l = 2 * i + 1 r = 2 * i + 2 if l < n and arr[i] < arr[l]: largest = l if r < n and arr[largest] < arr[r]: largest = r if largest != i: arr[i],arr[largest] = arr[largest],arr[i] # 交换 heapify(arr, n, largest) def heapSort(arr): n = len(arr) for i in range(n, -1, -1): heapify(arr, n, i) for i in range(n-1, 0, -1): arr[i], arr[0] = arr[0], arr[i] # 交换 heapify(arr, i, 0) arr = [12, 11, 13, 5, 6, 7] heapSort(arr) n = len(arr) print("排序后") for i in range(n): print("%d" % arr[i]) ``` 上面的代码首先定义了两个函数:`heapify`和`heapSort`。`heapify`函数用于将数组的某个位置转换为最大堆,而`heapSort`函数用于对整个数组进行堆排序。在主程序中,我们定义了一个数组并对其进行了排序,并在最后打印出排序后的结果。 ### 回答2: 堆排序是一种基于二叉堆数据结构的排序算法。Python中可以通过构建堆、调整堆、交换元素等操作实现堆排序。 首先,构建堆的过程可以使用一个维护最大堆性质的函数实现。该函数接受一个列表和一个索引作为参数,将以该索引为根的子树调整为最大堆。具体步骤如下: 1. 初始化最大元素为根节点。 2. 将根节点与左右子节点进行比较,找出最大值。 3. 如果最大值不是根节点,则将最大值与根节点进行交换,并递归调整交换后的子树为最大堆。 其次,堆排序的过程可以通过调用构建堆函数实现。具体步骤如下: 1. 构建一个最大堆。 2. 将堆顶元素与最后一个元素进行交换,并将堆大小减1。 3. 从根节点开始调整交换后的子树为最大堆。 4. 重复步骤2和3,直到堆大小为1时排序完成。 最后,将以上实现步骤整合为一个堆排序函数,接受一个列表作为参数,返回排序后的列表。 以下是用Python实现堆排序的代码: ```python def heapify(arr, n, i): largest = i left = 2 * i + 1 right = 2 * i + 2 if left < n and arr[left] > arr[largest]: largest = left if right < n and arr[right] > arr[largest]: largest = right if largest != i: arr[i], arr[largest] = arr[largest], arr[i] heapify(arr, n, largest) def heapSort(arr): n = len(arr) for i in range(n // 2 - 1, -1, -1): heapify(arr, n, i) for i in range(n - 1, 0, -1): arr[i], arr[0] = arr[0], arr[i] heapify(arr, i, 0) return arr # 测试 arr = [12, 11, 13, 5, 6, 7] sorted_arr = heapSort(arr) print("排序结果:", sorted_arr) ``` 以上利用Python语言实现了堆排序算法,其中heapify函数用于维护最大堆性质,heapSort为堆排序函数,通过调用heapify函数构建最大堆,并依次交换堆顶元素与最后一个元素进行排序。输出结果为排序后的列表。 ### 回答3: 堆排序是一种利用堆的数据结构进行排序的算法。它的主要思想是将待排序的序列构建成一个大顶堆或小顶堆,然后依次取出堆顶元素,使得取出的元素按照升序或降序排列。 在Python中,我们可以通过使用heapq模块来实现堆排序。具体的步骤如下: 1. 导入heapq模块 ```python import heapq ``` 2. 定义堆排序函数 ```python def heap_sort(arr): # 构建一个空的堆列表 heap = [] # 遍历待排序的序列,将其元素加入堆列表中 for i in arr: heapq.heappush(heap, i) # 依次取出堆顶元素,使序列有序 sorted_arr = [] while heap: sorted_arr.append(heapq.heappop(heap)) return sorted_arr ``` 3. 测试堆排序函数 ```python arr = [9, 7, 5, 3, 1, 8, 6, 4, 2] sorted_arr = heap_sort(arr) print(sorted_arr) ``` 上述代码中,我们首先构建了一个空的堆列表,然后使用heappush函数将待排序序列的元素依次加入堆中。接着,我们利用heappop函数依次取出堆顶元素,使得序列有序。最后,我们输出排序后的序列。 执行以上代码,将会输出:[1, 2, 3, 4, 5, 6, 7, 8, 9],即为使用堆排序算法后得到的有序序列。 堆排序的时间复杂度为O(nlogn),其中n为待排序序列的长度。这是一种比较高效的排序算法,适用于大规模数据的排序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值