数论倒数,又称逆元
取模
对于取模,有一下一些性质:
但是唯独除法是不满足的:
为什么除法错的呢?很好证明:
而对于一些题目,我们必须在中间过程中进行求余,否则数字太大,电脑存不下,那如果这个算式中出现除法,我们就需要逆元了。
逆元
定义:
我们知道,如果a*x = 1,那么x是a的倒数,x = 1/a
而在数论问题中,大部分情况都有取模,所以问题就变成了:
这时x在数值上就不一定等于我们常规意义上的1/a了,我们可以理解为要求在0,1,2……p-1之间找一个数,是的这个数和a相乘后再取模p,得到的结果为1。
现在就要在回到刚才的问题了,除以一个数等于乘上这个数的倒数,在除法取余的情况下,就是乘上这个数的逆元,即: