逆元(数论倒数)【密码学笔记】

本文介绍了数论中的逆元概念,即模意义下的数的倒数,阐述了在取模运算中除法无法直接进行的情况,提出了逆元的重要性。详细讨论了逆元的三种求解方法:扩展欧几里得算法、费马小定理以及一种基于递归的求解方式。这些方法使得在模p空间中,可以通过乘法操作替代除法,简化计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数论倒数,又称逆元

取模

对于取模,有一下一些性质:

但是唯独除法是不满足的:

为什么除法错的呢?很好证明:

而对于一些题目,我们必须在中间过程中进行求余,否则数字太大,电脑存不下,那如果这个算式中出现除法,我们就需要逆元了。

逆元

定义:

我们知道,如果a*x = 1,那么x是a的倒数,x = 1/a

而在数论问题中,大部分情况都有取模,所以问题就变成了:

这时x在数值上就不一定等于我们常规意义上的1/a了,我们可以理解为要求在0,1,2……p-1之间找一个数,是的这个数和a相乘后再取模p,得到的结果为1。

现在就要在回到刚才的问题了,除以一个数等于乘上这个数的倒数,在除法取余的情况下,就是乘上这个数的逆元,即:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值