基本代数概念与有限域下的椭圆曲线【密码学笔记】

本文介绍了群与域的基本概念,特别是有限域的定义及其在模运算下的运算规则。深入讨论了一元多项式在有限域上的运算,包括加法、减法、乘法和除法。接着,文章详细阐述了椭圆曲线的定义、性质及在有限域上的应用,解释了椭圆曲线加法运算的规则,包括单位元、逆元和结合律、交换律。最后,探讨了椭圆曲线在有限域(F_p)中的表示及加法规则,并给出了具体的计算示例。
摘要由CSDN通过智能技术生成

群G(group)是指由一个集合和一个二元运算 \(*\) (这里的 \(*\) 不是指乘法)构成的代数系,含有以下四个性质

  • 群在 \(*\) 下的运算是封闭的

对于任意G中的两个元素,\(a\)\(b\)\(a*b\) 也是 \(G\) 中的一个元素。

  • 群中有一个元素 \(e\),称为单位元

对于群中的每个元素 \(a\) 都满足 \(a*e=e*a\)

  • 群中每个元素都有逆元,记作\(a^{-1}\)

对于群中每个元素 \(a\) 都满足 \(a*a^{-1}=a^{-1}*a=e\)

  • 群中运算都满足结合律

对于群中任意元素,\(a,b,c\) 都满足 \((a*b)*c=a*(b*c)\)

如果 \(G\) 满足交换律,则称群 \(G\) 为交换群或者阿贝尔群。

​ 举个例子,整数集 \(Z\) 就是一个具有加法运算的群,也是阿贝尔群,\(0\) 位单位元,每个元素\(a\) 都有逆元 \(-a\),加法运算满足结合律。而整数集 \(Z\)不是一个具有乘法运算的群,因为元素 \(0\) 没有逆元。

​ 容易证明,每个群中的单位元都是唯一的,同时,群中每个元素的逆元也是唯一的,并且一个元素的逆元的逆元是该元素本身。\((a^{-1})^{-1}=a\)

​ 每当群中运算用于同一个元素与其自身相运算两次或多次时,可以采用指数运算来表示。这样就有 \(a^2=a*a\)\(a^{n}=a* a \ldots * a\),也就是说在整数集的加法运算下,\(a^2=a+a\),只是这不符合大家的习惯。

\(F\) 是一个含有至少两个元素的集合,含有两个二元运算称为加法和乘法(并不一定是我们通常意义上的加法和乘法),并满足以下性质:

  1. 集合 \(F\) 在加法下是一个阿贝尔群
  2. 集合 \(F\) 在乘法下是封闭的,且域中所有非零元素构成的集合在乘法下是一个阿贝尔群
  3. 对于集合F中所有的\(a,b,c\),分配率 \((a+b)c=ac+bc\) 都成立。

有限域

若域中元素个数有限,则称 \(F\)有限域。并记作 \(F_q\)\(GF(q)\) ,其中 \(q\) 为该有限域的元素个数,也叫做有限域的阶数。

例如,设 \(p\) 为素数,对于非空集合\(F=\{0,1, ...,p-1\}\),在模 \(p\) 的情况下做加法和乘法运算,定义运算规则为:
\[ a\oplus b=a+b=r\left( mod\ p\right),a,b,r \in F\\ a\otimes b=a\times b=s\left( mod\ p\right),a,b,s \in F \]

\(F\)关于加法构成交换群,加法单位元为\(0\)\(F\) 中全体非零元对乘法构成交换群,乘法单位元为1;分配率也成立。故 \(F\) 在定义的加法和乘法运算下构成有限域,用 \(GF(p)\)\(F_p\)表示。

例如,\(GF(2)\), 域中元素只有\(0,1\).域中运算为:\(1+1=0,1+0=1,0+1=1,0+0=0,1*1=1,1*0=0,0*1=0,0*0=0\).

域上的一元多项式

基本性质

数学家已经证明(好厉害哟),一个有限域 \(GF(k)\),其 \(k\) 必为 \(p\) 或者 \(p^m\) ( \(p\) 为素数),其它的 \(k\) 将不能构成有限域。 \(p^m\) ( \(p\) 为素数)的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值