海康VisionMaster使用学习笔记7-Group模块

Group模块的使用

在这里插入图片描述

1. 添加图像源,导入图片

在这里插入图片描述

2. 添加快速匹配

在这里插入图片描述
在这里插入图片描述

对匹配框区域进行顶点检测
并循环10次(匹配框个数
从而检测出所有顶点)。

3. 添加Group工具

在这里插入图片描述

拖一个Group模块

在这里插入图片描述

点击设置

  1. 输入设置

添加图像源输入数据

在这里插入图片描述

添加快速匹配的匹配框

在这里插入图片描述

4. 双击Group工具块进入

在这里插入图片描述

  1. 添加顶点检测

在这里插入图片描述

用于定位匹配框中的顶点

基本参数设置

图像输入源选择Group的图像输入源

ROI区域继承方式

  1. ROI创建选择继承

  2. 继承方式选择按区域

  3. 区域选择Group的快速匹配的匹配框
    光标需放在[]中选择循环索引,循环索引用于实现依次检测10个匹配框的顶点,若不订阅,模块会循环检测同一个匹配框

在这里插入图片描述

5. 执行顶点检测

在这里插入图片描述

可以看到绿色是它的边缘点.为方便查看顶点,将边缘点设置为不可见

在这里插入图片描述

为显示方便,将OK设为红色,NG设为绿色

在这里插入图片描述

可以看到检测到的顶点

在这里插入图片描述

6. 添加点集

在这里插入图片描述

拖出一个点集模块,用于组合检测出的顶点

  1. 基本参数
    点输入选择顶点检测的顶点

打开循环使能

在这里插入图片描述

点击执行

此时Group内部的方案就完成了

7. Group设置

回到上一层,点击Group工具的设置图标,

  1. 输出设置

将点集的点结果输出

在这里插入图片描述

  1. 循环设置

循环使能打开,开始值设为0,循环结束值设为快速匹配的匹配个数

在这里插入图片描述

  1. 显示设置

添加订阅到Group内部的顶点检测

在这里插入图片描述

8. 添加圆拟合工具

在这里插入图片描述

圆拟合的点设置为Group工具输出的点集

9. 运行流程

在这里插入图片描述

### VisionMaster 轮廓度检测的方法及应用实例 #### 一、轮廓度检测原理 在工业视觉领域,轮廓度检测是一种重要的质量控制手段。通过图像处理技术获取目标对象的边缘特征,并将其与预定义的标准模型进行对比分析来判断产品是否合格。VisionMaster软件平台支持多种方式来进行精确可靠的轮廓测量。 对于不规则形状零件而言,在实际操作中通常会先建立一个理想化的理论边界曲线作为参照物[^1]。接着利用机器学习算法自动识别并提取待测工件的真实外形轮廓线段集合。最后计算两者之间的偏差量从而得出最终的结果评价指标。 #### 二、具体实施流程 为了完成一次完整的轮廓度检验过程,一般按照以下逻辑顺序执行各个子任务: - **图像采集**:使用高分辨率相机拍摄被检物品表面影像; - **预处理阶段**:去除噪声干扰因素影响的同时增强感兴趣区域内的细节表现力; - **边缘定位**:借助Canny算子等经典方法找到物体外缘所在位置; - **拟合建模**:依据所得数据点集构建数学表达式表示预期形态; - **误差评估**:量化实测值同设定标准间的差异程度大小关系。 ```python import cv2 from skimage import feature, data def detect_contour(image_path): img = cv2.imread(image_path) gray_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) edges = feature.canny(gray_img,sigma=3) contours,hierarchy=cv2.findContours(edges.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)[-2:] contour_image = cv2.drawContours(img.copy(),contours,-1,(0,255,0),2) return contour_image ``` 上述代码片段展示了如何运用Python结合OpenCV库实现基本的轮廓抽取功能。其中`cvtColor()`负责颜色空间转换以便后续步骤能够顺利开展;而`findContours()`则可以快速找出所有封闭连通域对应的顶点坐标序列供进一步加工处理之用。 #### 三、应用场景举例说明 以汽车制造行业为例,车身钣金件装配前后的尺寸精度至关重要。此时就可以引入VisionMaster系统辅助工程师们高效准确地完成这项工作。当生产线上的机器人手臂抓取到新生产的门板后立即将其放置于专门设计好的夹具之上固定住姿态方位不变动。紧接着启动安装在其正上方的一组CCD摄像机组件同步拍照记录下当前状况下的整体外观情况。经过一系列复杂的运算之后屏幕上就会显示出两幅重叠在一起的画面——一边是CAD图纸上标注出来的完美版样貌,另一边则是刚刚拍下来的实物照片。技术人员只需简单观察二者之间是否存在明显错位现象即可知晓该批次产品质量的好坏等级了[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值