题目要求
从瑞神家打牌回来后,东东痛定思痛,决定苦练牌技,终成赌神!
东东有 A × B 张扑克牌。每张扑克牌有一个大小(整数,记为a,范围区间是 0 到 A - 1)和一个花色(整数,记为b,范围区间是 0 到 B - 1。
扑克牌是互异的,也就是独一无二的,也就是说没有两张牌大小和花色都相同。
“一手牌”的意思是你手里有5张不同的牌,这 5 张牌没有谁在前谁在后的顺序之分,它们可以形成一个牌型。 我们定义了 9 种牌型,如下是 9 种牌型的规则,我们用“低序号优先”来匹配牌型,即这“一手牌”从上到下满足的第一个牌型规则就是它的“牌型编号”(一个整数,属于1到9):
- 同花顺: 同时满足规则 5 和规则 4.
- 炸弹 : 5张牌其中有4张牌的大小相等.
- 三带二 : 5张牌其中有3张牌的大小相等,且另外2张牌的大小也相等.
- 同花 : 5张牌都是相同花色的.
- 顺子 : 5张牌的大小形如 x, x + 1, x + 2, x + 3, x + 4
- 三条: 5张牌其中有3张牌的大小相等.
- 两对: 5张牌其中有2张牌的大小相等,且另外3张牌中2张牌的大小相等.
- 一对: 5张牌其中有2张牌的大小相等.
- 要不起: 这手牌不满足上述的牌型中任意一个.
现在, 东东从A × B 张扑克牌中拿走了 2 张牌!分别是 (a1, b1) 和 (a2, b2). (其中a表示大小,b表示花色)
现在要从剩下的扑克牌中再随机拿出 3 张!组成一手牌!!
其实东东除了会打代码,他业余还是一个魔法师,现在他要预言他的未来的可能性,即他将拿到的“一手牌”的可能性,我们用一个“牌型编号(一个整数,属于1到9)”来表示这手牌的牌型,那么他的未来有 9 种可能,但每种可能的方案数不一样。
现在,东东的阿戈摩托之眼没了,你需要帮他算一算 9 种牌型中,每种牌型的方案数。
求解思路
- 首先,A×B张扑克牌中可能的牌有 大小 0 到 A - 1和 花色 0 到 B - 1。去掉已知的两张牌,共有A×B-2张。
使用vector记录这A×B-2张牌。牌用结构体存储。
struct p
{
int a, b;
bool operator <(const p& se)
{
if (a != se.a)
return a < se.a;
return b < se.b;
}
};
- 从vector中取三张,应保证每次取出的三张之前没有取到过,且三张牌中不能有两张牌完全一样,因此遍历方式为:
for (int i = 0; i < s.size(); i++)
for (int j = i + 1; j < s.size(); j++)
for (int k = j + 1; k < s.size(); k++)
{
current[0].a = x1.a; current[0].b = x1.b;
current[1].a = x2.a; current[1].b = x2.b;
current[2].a = s[i].a; current[2].b = s[i].b;
current[3].a = s[j].a; current[3].b = s[j].b;
current[4].a = s[k].a; current[4].b = s[k].b;
caculate();
}
- 已知的两张牌和取出的三张牌组成一个组合,判断该组合属于哪一种牌型。
创建vector记录每种大小出现的次数。
struct v
{
int a;
int num = 0 ;
v(int _a, int _num)
{
a = _a; num = _num;
}
};
vector<v> record;
- 记录方式为遍历容器,若存在,则对应的数量加一,若不存在,就push
record.clear();
for (int i = 0; i < 5; i++)
{
bool in = false;
for (int j = 0; j < record.size(); j++)
{
if (current[i].a == record[j].a)
{
record[j].num++;
in = true;
break;
}
}
if (in == false)
{
record.push_back(v(current[i].a, 1));
}
}
- 统计五张牌中相同大小牌的张数,确定属于哪种牌型:
int one = 0;
int second = 0;
int third = 0;
int forth = 0;
for (int i = 0; i < record.size(); i++)
{
if (record[i].num == 2)
second++;
else if (record[i].num == 3)
third++;
else if (record[i].num == 4)
{
forth++;
}
else if (record[i].num == 1)
one++;
}
注意牌型优先级为序号从小到大,应先判断4、5,若同时满足,则牌型为1.
代码
#include<iostream>
#include<stdio.h>
#include<queue>
#include<algorithm>
#include<vector>
#include<set>
using namespace std;
struct p
{
int a, b;
bool operator <(const p& se)
{
if (a != se.a)
return a < se.a;
return b < se.b;
}
};
int A, B;
struct v
{
int a;
int num = 0 ;
v(int _a, int _num)
{
a = _a; num = _num;
}
};
p x1, x2;
vector<p> s;
p current[5];
vector<v> record;
int con[10];
void caculate()
{
sort(current, current + 5);
bool j4 = true;//同花
bool j5 = true;
for (int i = 0; i < 5; i++)
{
if (current[i].b != current[0].b)
{
j4 = false;
}
}
for (int i = 1; i < 5; i++)
{
if (current[i].a != current[i - 1].a + 1)
{
j5 = false;
}
}
if (j4 == true && j5 == true)//1
{
con[1]++; return;
}
record.clear();
for (int i = 0; i < 5; i++)
{
bool in = false;
for (int j = 0; j < record.size(); j++)
{
if (current[i].a == record[j].a)
{
record[j].num++;
in = true;
break;
}
}
if (in == false)
{
record.push_back(v(current[i].a, 1));
}
}
int one = 0;
int second = 0;
int third = 0;
int forth = 0;
for (int i = 0; i < record.size(); i++)
{
if (record[i].num == 2)
second++;
else if (record[i].num == 3)
third++;
else if (record[i].num == 4)
{
forth++;
}
else if (record[i].num == 1)
one++;
}
if (forth == 1)
{
con[2]++; return;
}
if (third == 1 && second == 1)
{
con[3]++; return;
}
if (j4 == true && j5 != true)
{
con[4]++; return;
}
if (j4 != true && j5 == true)
{
con[5]++; return;
}
if (third == 1 && one == 2)
{
con[6]++; return;
}
if (second == 2 && one==1)
{
con[7]++; return;
}
if (second == 1 && one == 3)
{
con[8]++; return;
}
con[9]++;
}
int main()
{
cin >> A >> B >> x1.a >> x1.b >> x2.a >> x2.b;
for (int i = 0; i < 10; i++)
con[i] = 0;
for(int i=0;i<A;i++)
for (int j = 0; j < B; j++)
{
if (i == x1.a && j == x1.b) { continue; }
if (i == x2.a && j == x2.b) { continue; }
p temp;
temp.a = i; temp.b = j;
s.push_back(temp);
}
for (int i = 0; i < s.size(); i++)
for (int j = i + 1; j < s.size(); j++)
for (int k = j + 1; k < s.size(); k++)
{
current[0].a = x1.a; current[0].b = x1.b;
current[1].a = x2.a; current[1].b = x2.b;
current[2].a = s[i].a; current[2].b = s[i].b;
current[3].a = s[j].a; current[3].b = s[j].b;
current[4].a = s[k].a; current[4].b = s[k].b;
caculate();
}
for (int i = 1; i <= 9; i++)
{
cout << con[i] << " ";
}
}
1137

被折叠的 条评论
为什么被折叠?



