简介
油膜力是滑动轴承正常运转的关键因素。
在滑动轴承中,润滑油形成的油膜所产生的力即为油膜力。其大小和方向与运动速度、润滑油的粘度以及轴承表面的形貌等因素相关。 早期对滑动轴承油膜力动力特性的研究主要集中在理论计算方面,基于伯努利方程、雷诺方程等理论模型,可以计算出轴承内部润滑油的流动、摩擦、传热等基本参数,从而得到油膜力动力学模型。但这些理论模型过于简化,精度有限。近年来,基于 CFD 模拟的方法逐渐成为主流,它可以更加准确地考虑润滑油在轴承内的流动和摩擦情况,实现对更加复杂的轴承形状的建模和分析。同时,实验研究也是重要手段,常见的滑动轴承实验方法包括测量压力分布、油膜厚度分布以及摩擦扭矩等参数,还可以通过使用 PIV、LDV 等测量技术,获得润滑油在轴承内部的流动情况。 例如,在《滑动轴承油膜力计算公式修正探讨》中,作者利用理论力学中运动的合成与分解原理,修正了旋转坐标系下的雷诺方程,推导出正确的短圆柱滑动轴承油膜力计算公式。在《轴承油膜力识别的原理及测点分析》中,阐明了通过油膜压力识别油膜力的原理,以短轴承理论为基础给出了油膜力识别方程,从理论上研究了测点压力与油膜力之间的内在联系和相互转换的曲线,并讨论了识别技术成立的条件和限制。在《滑动轴承非线性油膜力的几个理论问题及应用》中提到,实际轴承都是有限长的而且由若干个瓦块构成,短轴承油膜力模型难以适用,于是有文献提出建立有限轴承的非线性油膜力数据库,运用插值来求油膜力,同时寻求油膜力解析或半解析解。在《考虑可压缩性及惯性力的油膜力研究》中,建立了考虑轴颈惯性力的力平衡方程以及考虑油膜可压缩性的雷诺方程,计算轴承在瞬态冲击载荷作用下的油膜压力特性。在《基于神经网络的径向滑动轴承油膜力快速计算方法》中,介绍了一种基于神经网络的径向滑动轴承油膜力快速计算方法。在《典型滑动轴承油膜力解析模型的对比分析及试验研究》中,针对几种典型的径向滑动轴承非线性油膜力解析模型作对比性研究,并在三支承结构形式的动静压混合气动轴承转子系统上进行了试验。在《滑动轴承转子结构参数对油膜力的影响》中,研究了滑动轴承转子结构参数对油膜力的影响,结合非线性动力学理论和数值计算方法,获得了油膜力与结构参数变化的图形关系以及偏心率与 Sommerfeld 无量纲综合载荷系数的图形关系。
对滑动轴承的重要性
油膜力对滑动轴承起着至关重要的作用。滑动轴承是许多机械设备中关键的零部件,广泛应用于发动机、减速器、风机等领域。油膜力是滑动轴承正常运转的关键因素,其大小和分布直接影响着轴承的摩擦、损耗、寿命和可靠性。如果油膜力能够保持在合理的范围内,轴承的摩擦就会减小,从而降低能量损耗,提高设备的运行效率。同时,合适的油膜力可以减少轴承的磨损,延长轴承的使用寿命,提高设备的可靠性。例如,在一些高精度的设备中,油膜力的稳定性对于保证设备的精度至关重要。如果油膜力不稳定,可能会导致轴承的振动加剧,影响设备的正常运行。总之,油膜力对滑动轴承的重要性不可忽视,它直接关系到设备的性能和可靠性。
影响因素
油膜力的大小受到多种因素的影响。首先,润滑油的粘度是一个关键因素。润滑油粘度就像润滑油的“粘弹性”,在滑动表面间形成一层薄薄的油膜。如果粘度过高,油膜压力会相应增大,反之则减小。例如,在高温环境下,润滑油的粘度可能会降低,从而导致油膜力减小。其次,表面滑动速度至关重要。它不仅决定了油膜的形成和稳定性,还影响着油膜的压力分布。只有当油膜的形成和油液流动方向保持一致,油膜压力才能达到最佳状态。比如,在高速运转的设备中,表面滑动速度较快,油膜力也会相应增大。最后,油膜的厚度在一定程度上反映了油膜压力的大小。随着油膜厚度增加,油膜压力可能增大,但过厚可能会导致不稳定,甚至产生不必要的磨损。此外,温度、负载、转速等因素也会影响油膜力。在实际应用中,需要根据具体情况进行综合考虑,合理控制这些因素,才能保证滑动轴承的正常运行。
理论计算方法(长、短、有限长轴承理论)
计算油膜力主要需要求解一定边界条件下的雷诺方程。基于雷诺方程、纳维-斯托克斯方程和能量方程等理论,可以建立油膜力数学模型,对滑动轴承的油膜力动力特性进行理论分析。变分理论表明,考虑了气穴影响的雷诺方程是一个自由边值问题,等价于凸集上的泛函极值问题。利用这一理论可以提出计算雷诺边界条件下油叶型轴颈轴承油膜力的快速算法,并将此算法用于油叶型轴承的非线性动力学分析。还可以利用理论力学中运动的合成与分解原理,修正旋转坐标系下的雷诺方程,推导出正确的短圆柱滑动轴承油膜力计算公式。从新的油膜力计算公式可看出,短圆柱滑动轴承径向油膜力的大小与轴是否存在涡动无关,仅与轴的绝对转速有关。早期的滑动轴承油膜力动力特性研究主要集中在理论计算方面,但这些理论模型过于简化,忽略了许多现实情况,如粘度变化、异形轴承等,因此其精度有限。
实验研究手段
油膜力的实验研究可以采用滑动轴承试验台,搭载传感器测量油膜力分布、温度分布、轴承启动力等相关参数,实现对滑动轴承油膜力动力特性的实验研究。例如,可以设计制造一台恒运动循环的挤压油膜实验台,通过给定挤压量变化规律,再去测量压强分布和油膜破裂状态,这样挤压力随挤压量可变,就得到了计算油膜力的手段,也就能更准确地反映动载轴承的特性。还可以制定油膜测试方案,确定升速步长,在轧机零调完成后,辊缝保持零点位置不变情况下,轧机升速进行油膜测试,采集工作辊转速和轧制力实测值,通过实测工作辊转速、工作辊和支撑辊直径计算支撑辊转速,实测轧制力与零调压力之差来计算油膜力。另外,实验中还可以考虑压力、位移和图像信号的对应采集,一系列的可重复的实验数据,为确立更加准确的、合理的动载油膜的边界条件提供坚实的基础。
快速计算方法
一种基于神经网络的径向滑动轴承油膜力快速计算方法是:先建立滑动轴承的雷诺方程并确定其边界条件,将径向滑动轴承的油膜区域展开得到雷诺方程的求解域并划分为均匀的四边形网格以便后续用有限差分法快速求解雷诺方程。根据给定的径向滑动轴承类型及参数计算径向滑动轴承的油膜厚度,在径向滑动轴承的轴心轨迹可行域内任取一点作为滑动轴承的偏心位置,将偏心位置带入膜厚方程得到此偏心位置下膜厚方程,将雷诺方程无量纲化从而减少自变量数目并提高计算精度,利用有限差分法按划分的网格根据边界条件求解无量纲化后的雷诺方程计算出径向滑动轴承的无量纲油膜压力分布,将油膜压力有量纲化,通过积分计算出油膜力,根据油膜压力分布等于轴承承受的外部激励载荷计算得到偏心位置的速度。重复上述步骤多次,得到多组偏心位置、速度和油膜力数据,将这些数据作为训练数据,建立两个前馈神经网络分别对训练数据进行训练,根据误差值修正每一层网络的参数,直到神经网络在验证集错误率达到要求,训练后的前馈神经网络为油膜力的最终预测模型,能够表达油膜力。 油膜力在滑动轴承中起着至关重要的作用。通过对油膜力的影响因素、理论计算方法、实验研究手段和快速计算方法的研究,可以更好地理解油膜力的特性,为提高滑动轴承的性能和可靠性提供理论依据和技术支持。在实际应用中,需要综合考虑各种因素,选择合适的计算方法和实验手段,以确保滑动轴承的正常运行。