一、边缘检测基本定义
边缘检测是检测图像特性发生变化的位置。不同的图像灰度不同,边界处会有明显的边缘,利用此特征可以分割图像。边缘检测分割法是通过检测出不同区域边界来进行分割的。边缘总是以强度突变的形式出现,可以定义为图像局部特性的不连续性,如灰度的突变和纹理结构的突变等。图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构。边缘提取和分割是图像分割的经典研究课题之一,直到现在仍然在不断改进和发展.
常见的边缘检测方法有微分算子、Canny 算子和LOG算子等。常用的微分算子有Sobel算子、Roberts 算子和Prewit算子等。
二、图像中的线段
将图像点(x,y)某个邻域中每个像素值都与模板中对应的系数相乘,然后将结果进行累加,从而得到该点的新像素值。如果邻域的大小为mn,则总共有mn个系数。这些系数组成的矩阵称为模板或算子。通常采用的最小模板是3X3。
对于图像中的间断点,常用的检测模板为: