图像处理之LSB Matching Revisited论文复现

一、LSB Matching Revisited摘要

在这里插入图片描述
这篇本章提出了对最低有效位(LSB)匹配的修改,这是一种将信息位嵌入静止图像的隐写法。在LSB匹配中,从载体图像的像素中增加或减少一个的选择是随机的。新方法使用选择将两个载体像素的二进制函数设置为所需的值。使用一对像素作为单位来执行嵌入,其中第一个像素的LSB携带一个比特的信息,两个像素值的函数携带另一个比特的信息。因此,改进后的方法允许嵌入与LSB匹配相同的有效载荷,但对载体图像的变化较少。实验结果表明,该方法在失真和抗隐写分析方面优于传统的LSB匹配。

二、提出的方法

提出的方法使用灰度载体图像。信息嵌入一次针对两个载体图像的像素进行。这两个像素的灰度值是xi和xi+1。信息嵌入后,第i个信息位mi的值等于隐写图像的第i个像素yi的LSB。第i+1个信息位mi+1的值是yi和yi+1的函数,其中函数为 f(yi,yi+1)=LSB(⌊yi/2⌋+yi+1)。一对像素的嵌入算法如下图所示:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值