一、LSB Matching Revisited摘要

这篇本章提出了对最低有效位(LSB)匹配的修改,这是一种将信息位嵌入静止图像的隐写法。在LSB匹配中,从载体图像的像素中增加或减少一个的选择是随机的。新方法使用选择将两个载体像素的二进制函数设置为所需的值。使用一对像素作为单位来执行嵌入,其中第一个像素的LSB携带一个比特的信息,两个像素值的函数携带另一个比特的信息。因此,改进后的方法允许嵌入与LSB匹配相同的有效载荷,但对载体图像的变化较少。实验结果表明,该方法在失真和抗隐写分析方面优于传统的LSB匹配。
二、提出的方法
提出的方法使用灰度载体图像。信息嵌入一次针对两个载体图像的像素进行。这两个像素的灰度值是xi和xi+1。信息嵌入后,第i个信息位mi的值等于隐写图像的第i个像素yi的LSB。第i+1个信息位mi+1的值是yi和yi+1的函数,其中函数为 f(yi,yi+1)=LSB(⌊yi/2⌋+yi+1)。一对像素的嵌入算法如下图所示:
订阅专栏 解锁全文
369

被折叠的 条评论
为什么被折叠?



