代码随想录训练营第50天|123.买卖股票的最佳时机III,188.买卖股票的最佳时机IV
123.买卖股票的最佳时机III
文章
思路
尝试了好多思路,结果都不对,一道题卡了九十分钟,最后求助卡哥
解答了昨天的疑惑,为什么要区分是否持有股票的不同状态
原始状态->第一次买入->第一次卖出->第二次买入->第二次卖出
同一天可以多次买卖所以完全说得通
代码
class Solution {
public int maxProfit(int[] prices) {
int i, n;
n = prices.length;
int[][] dp = new int[n][4];
dp[0][0] = -prices[0];
dp[0][2] = -prices[0];
for (i = 1; i < n; ++i) {
dp[i][0] = Math.max(-prices[i], dp[i - 1][0]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
dp[i][2] = Math.max(dp[i - 1][1] - prices[i], dp[i - 1][2]);
dp[i][3] = Math.max(dp[i - 1][2] + prices[i], dp[i - 1][3]);
}
return dp[n - 1][3];
}
}
188.买卖股票的最佳时机IV
文章
思路
与上题相同,但是仔细想了一下,优化空间是可以用滚动数组
稍稍优化
代码
class Solution {
public int maxProfit(int k, int[] prices) {
int i, j, n;
n = prices.length;
int[] dp = new int[2 * k];
for (j = 0; j < 2 * k; j += 2) {
dp[j] = -prices[0];
}
for (i = 1; i < n; ++i) {
for (j = 0; j < 2 * k; ++j) {
if (j == 0) {
dp[j] = Math.max(dp[j], -prices[i]);
}
else if (j % 2 == 1) {
dp[j] = Math.max(dp[j], dp[j - 1] + prices[i]);
}
else {
dp[j] = Math.max(dp[j], dp[j - 1] - prices[i]);
}
}
}
return dp[2 * k - 1];
}
}
总结
难到爆炸了感觉
原先设想III这道题是dp数组中的不同分界点,求两边的收益之和最大,其中可能还要使用单调队列
但是即便这样解出来也没有办法推广到买卖K次,还需要加深理解,举一反三就很困难了