代码随想录训练营第50天|123.买卖股票的最佳时机III,188.买卖股票的最佳时机IV

代码随想录训练营第50天|123.买卖股票的最佳时机III,188.买卖股票的最佳时机IV

123.买卖股票的最佳时机III

文章

代码随想录|0123.买卖股票的最佳时机III

思路

尝试了好多思路,结果都不对,一道题卡了九十分钟,最后求助卡哥
解答了昨天的疑惑,为什么要区分是否持有股票的不同状态
原始状态->第一次买入->第一次卖出->第二次买入->第二次卖出
同一天可以多次买卖所以完全说得通

代码

class Solution {
    public int maxProfit(int[] prices) {
        int i, n;
        n = prices.length;
        int[][] dp = new int[n][4];
        dp[0][0] = -prices[0];
        dp[0][2] = -prices[0];
        for (i = 1; i < n; ++i) {
            dp[i][0] = Math.max(-prices[i], dp[i - 1][0]);
            dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
            dp[i][2] = Math.max(dp[i - 1][1] - prices[i], dp[i - 1][2]);
            dp[i][3] = Math.max(dp[i - 1][2] + prices[i], dp[i - 1][3]);
        }
        return dp[n - 1][3];
    }
}

188.买卖股票的最佳时机IV

文章

代码随想录|0188.买卖股票的最佳时机IV

思路

与上题相同,但是仔细想了一下,优化空间是可以用滚动数组
稍稍优化

代码

class Solution {
    public int maxProfit(int k, int[] prices) {
        int i, j, n;
        n = prices.length;
        int[] dp = new int[2 * k];
        for (j = 0; j < 2 * k; j += 2) {
            dp[j] = -prices[0];
        }
        for (i = 1; i < n; ++i) {
            for (j = 0; j < 2 * k; ++j) {
                if (j == 0) {
                    dp[j] = Math.max(dp[j], -prices[i]);
                }
                else if (j % 2 == 1) {
                    dp[j] = Math.max(dp[j], dp[j - 1] + prices[i]);
                }
                else {
                    dp[j] = Math.max(dp[j], dp[j - 1] - prices[i]);
                }
            }
        }
        return dp[2 * k - 1];
    }
}

总结

难到爆炸了感觉
原先设想III这道题是dp数组中的不同分界点,求两边的收益之和最大,其中可能还要使用单调队列
但是即便这样解出来也没有办法推广到买卖K次,还需要加深理解,举一反三就很困难了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值