import argparse
import os
import random
import argparse
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML
from PIL import Image
manualSeed = 999
print("Random seed:", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
data_root = "./CAN_image_dataset/" # dataset root
workers = 1 # using thread numbers
batch_size = 128 # batch_size
nc = 1 # number of channel from input images
num_epochs = 100 # number of training epochs
lr = 0.0001 # learning rate
beta1 = 0.5 # hyperparameter for adam optimizer
ngpu = 1
dataset = dset.ImageFolder(root=data_root,
transform=transforms.Compose([
transforms.Grayscale(1),
transforms.ToTensor(),
]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=workers)
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
real_batch = next(iter(dataloader))
class PrintLayer(nn.Module):
def __init__(self):
super(PrintLayer, self).__init__()
def forward(self, x):
# Do your print / debug stuff here
print(x)
return x
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
class Generator(nn.Module):
def __init__(self, ngpu):
super(Generator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# Input : N x channel noise x 1 x 1
nn.ConvTranspose2d(256, 512, (4, 3), stride=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
# second layer
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(Tr
gan生成对抗网络
最新推荐文章于 2025-03-03 16:48:35 发布

最低0.47元/天 解锁文章

5202

被折叠的 条评论
为什么被折叠?



