函数对向量的求导

对于一个函数对向量的求导,通常使用向量的偏导数。如果有一个函数 f : R n → R f: \mathbb{R}^n \rightarrow \mathbb{R} f:RnR,其输入是一个 n 维向量 x = [ x 1 , x 2 , … , x n ] \mathbf{x} = [x_1, x_2, \ldots, x_n] x=[x1,x2,,xn],那么该函数的梯度(gradient)是一个包含所有偏导数的向量。梯度的第 i i i个分量是函数对第 i i i个自变量的偏导数。

数学上,可以表示为:

∇ f ( x ) = [ ∂ f ∂ x 1 , ∂ f ∂ x 2 , … , ∂ f ∂ x n ] \nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n}\right] f(x)=[x1f,x2f,,xnf]

这个向量包含了函数在给定点 x \mathbf{x} x处的切线方向上的斜率。这是一个非常有用的概念,特别是在优化问题中。

举例说明,如果有一个函数 f ( x ) = x 1 2 + 2 x 2 f(\mathbf{x}) = x_1^2 + 2x_2 f(x)=x12+2x2,则其梯度是 ∇ f ( x ) = [ 2 x 1 , 2 ] \nabla f(\mathbf{x}) = [2x_1, 2] f(x)=[2x1,2]

在实际操作中,可以通过计算每个自变量的偏导数来找到梯度。这涉及对每个变量分别求导,将其他变量视为常数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值