何为对偶问题

何为对偶问题

在优化理论中,对偶问题是原始优化问题的另一种表述形式。对偶问题通过某种数学变换或转换关系,将原始问题重新表述为另一个问题,通常具有一些特定的性质或特征。

对偶问题的出现通常涉及拉格朗日对偶性或凸优化理论。原始问题可能是最小化或最大化一个函数,而对偶问题是通过构建一个与原问题相关的函数,寻找这个函数的最大值或最小值。

拉格朗日对偶性是一种常用的方法来构建对偶问题。通过构建拉格朗日函数,引入拉格朗日乘子(对应原问题的约束条件),并通过最大化或最小化拉格朗日函数来得到对偶问题。

一般情况下,原始问题是优化问题的主问题,而对偶问题是对原始问题的一种补充性描述。对偶问题可以提供关于原始问题的额外信息,比如最优值的下界或上界。

在某些情况下,原始问题和对偶问题之间存在关系,比如对偶问题的最优解可以提供原始问题最优解的一个界限,或者在一些特定条件下,原始问题和对偶问题的最优解是相等的。

总的来说,对偶问题是对原始优化问题的另一种描述或表述,通常用于帮助理解、解决或优化原始问题。

数学形式

对偶问题通常可以通过拉格朗日对偶性来表述,数学形式如下:

假设有一个原始优化问题,形式为:

最小化 f 0 ( x ) f_0(x) f0(x),满足 f i ( x ) ≤ 0 ,   i = 1 , 2 , . . . , m f_i(x) \leq 0, \ i = 1, 2, ..., m fi(x)0, i=1,2,...,m h j ( x ) = 0 ,   j = 1 , 2 , . . . , p h_j(x) = 0, \ j = 1, 2, ..., p hj(x)=0, j=1,2,...,p,其中 x x x 是优化变量, f 0 ( x ) f_0(x) f0(x) 是目标函数, f i ( x ) f_i(x) fi(x) 是不等式约束, h j ( x ) h_j(x) hj(x) 是等式约束。

根据拉格朗日对偶性,可以构建拉格朗日函数:

L ( x , λ , ν ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ j = 1 p ν j h j ( x ) L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{j=1}^{p} \nu_j h_j(x) L(x,λ,ν)=f0(x)+i=1mλifi(x)+j=1pνjhj(x)

其中, λ i \lambda_i λi ν j \nu_j νj 是拉格朗日乘子(也称为对偶变量),用于对应不等式约束和等式约束。这些乘子用于构建对偶问题。

对偶问题的表达式是原始问题的极小极化(或极大极化),其数学形式为:

最大化 g ( λ , ν ) = inf ⁡ x L ( x , λ , ν ) g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) g(λ,ν)=infxL(x,λ,ν),其中 λ ≥ 0 \lambda \geq 0 λ0

这里的 g ( λ , ν ) g(\lambda, \nu) g(λ,ν) 是对偶函数,表示对拉格朗日函数 L ( x , λ , ν ) L(x, \lambda, \nu) L(x,λ,ν)在所有可能的 ( x ) 下的最小值。而对偶问题的目标是找到对偶函数的最大值,即找到对偶函数的上界。

对偶问题的目标是找到一组 λ \lambda λ ν \nu ν,使得对偶函数的最大值最大化,这个最大值对应于原始问题的最优值的下界。

这就是对偶问题的数学形式,它是原始问题的一种重新表述,用于寻找原始问题最优解的边界或提供一些关于最优解的信息。

举例说明

考虑一个简单的线性规划问题作为原始问题:

原始问题
最小化 f ( x ) = 3 x 1 + 5 x 2 \text{最小化} \quad f(x) = 3x_1 + 5x_2 最小化f(x)=3x1+5x2
在满足以下约束条件下:
2 x 1 + x 2 ≥ 10 x 1 + 3 x 2 ≥ 12 x 1 , x 2 ≥ 0 \begin{align*} 2x_1 + x_2 & \geq 10 \\ x_1 + 3x_2 & \geq 12 \\ x_1, x_2 & \geq 0 \end{align*} 2x1+x2x1+3x2x1,x210120

这个原始问题是一个最小化问题,我们希望找到使得目标函数 f ( x ) f(x) f(x)最小化的 x 1 x_1 x1 x 2 x_2 x2 的值,同时满足给定的约束条件。

现在,我们可以构建这个原始问题的对偶问题。首先,我们构建拉格朗日函数:

L ( x , λ ) = f ( x ) + λ 1 ( g 1 ( x ) ) + λ 2 ( g 2 ( x ) ) L(x, \lambda) = f(x) + \lambda_1(g_1(x)) + \lambda_2(g_2(x)) L(x,λ)=f(x)+λ1(g1(x))+λ2(g2(x))
其中, g 1 ( x ) = 2 x 1 + x 2 − 10 g_1(x) = 2x_1 + x_2 - 10 g1(x)=2x1+x210 g 2 ( x ) = x 1 + 3 x 2 − 12 g_2(x) = x_1 + 3x_2 - 12 g2(x)=x1+3x212 是约束条件, λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2 是对应的拉格朗日乘子。

接着,我们可以定义对偶函数 g ( λ ) g(\lambda) g(λ)。这个对偶函数的目标是在给定的约束下,找到拉格朗日函数 L ( x , λ ) L(x, \lambda) L(x,λ) 的最小值。即:

g ( λ ) = inf ⁡ x L ( x , λ ) g(\lambda) = \inf_{x} L(x, \lambda) g(λ)=infxL(x,λ)
其中 λ \lambda λ 是拉格朗日乘子的向量。

这个符号 inf ⁡ x L ( x , λ ) \inf_{x} L(x, \lambda) infxL(x,λ)表示对函数 L ( x , λ ) L(x, \lambda) L(x,λ) 在所有 x x x的取值中,取得的最小值。也就是说,对于给定的拉格朗日乘子 λ \lambda λ,函数 L ( x , λ ) L(x, \lambda) L(x,λ)针对所有可能的 x x x取值,得到的最小的结果。
在拉格朗日对偶问题中,我们试图最大化对偶函数 g ( λ ) g(\lambda) g(λ),而对偶函数是基于拉格朗日函数 L ( x , λ ) L(x, \lambda) L(x,λ) 的。而对偶函数的定义是:
g ( λ ) = inf ⁡ x L ( x , λ ) g(\lambda) = \inf_{x} L(x, \lambda) g(λ)=infxL(x,λ)
这意味着我们尝试找到一组乘子 λ \lambda λ,使得函数 L ( x , λ ) L(x, \lambda) L(x,λ)针对所有可能的 x x x取值,得到的最小值尽可能大。对偶函数的最优值提供了原始问题最优值的一个界限。如果对偶问题的最优值与原始问题的最优值相等,则我们称这个对偶问题是强对偶的。

这个对偶问题的目标是最大化 g ( λ ) g(\lambda) g(λ)。解决对偶问题可以提供原始问题最优值的一个下界。然后,我们可以尝试找到一组最优的 λ \lambda λ 值,使得对偶问题的最优值最大化。这个最大化的值对应的就是原始问题的最优值的一个界限。

好的讲解资源

可以看看这个视频,推荐,拉格朗日松弛(乘子法)及对偶问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值