粒子滤波器简介与Python实现

粒子滤波器简介与Python实现

参考文章:基于粒子滤波的定位算法 ——原理、理解与仿真

在复杂的系统模型中,我们经常需要估计和跟踪系统状态的变化。粒子滤波器(Particle Filter)作为一种强大的序列蒙特卡罗方法(Sequential Monte Carlo method),能有效处理非线性和非高斯的问题。本文将通过一个简单的例子,介绍粒子滤波器的基本概念和其在Python中的实现。

粒子滤波器的工作原理

粒子滤波器通过使用一组随机样本(粒子)来表示随机变量的概率分布。每个粒子代表了系统可能的状态,通过对这些粒子的操作,可以进行状态估计、预测和更新。

关键步骤

  1. 初始化:根据先验知识生成粒子群。
  2. 预测:根据系统模型,预测每个粒子在下一时刻的状态。
  3. 更新:利用观测数据更新每个粒子的权重,权重反映了该粒子代表的状态与实际观测相符合的程度。
  4. 重采样:根据粒子的权重进行重采样,淘汰权重低的粒子,复制权重高的粒子,保持粒子数不变。
  5. 估计:根据粒子的状态和权重,估计系统的当前状态。

Python实现

本例中,我们构建一个简单的模型,模拟一个在二维空间内运动的对象。我们假设对象的移动受到过程噪声的影响,同时观测数据也受到测量噪声的干扰。

关键参数

  • N: 粒子数量。
  • QR: 分别表示过程噪声和测量噪声的方差。
  • T: 总测量时间步数。
  • thetadistance: 分别代表每一步的旋转角度和移动距离。
  • WorldSize: 模拟的世界大小。
import numpy as np
from pylab import mpl
# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')

# 参数设置
N = 200  # 粒子总数
Q = 5  # 过程噪声
R = 5  # 测量噪声
T = 10  # 测量时间步数
theta = np.pi / T  # 旋转角度
distance = 80 / T  # 每次走的距离
WorldSize = 100  # 世界大小

# 初始化数组
X = np.zeros((2, T))  # 系统状态
Z = np.zeros((2, T))  # 观测状态
P = np.random.rand(2, N) * WorldSize  # 粒子位置
PCenter = np.zeros((2, T))  # 粒子中心位置
w = np.zeros(N)  # 粒子权重
err = np.zeros((2, T))  # 误差

# 初始状态
X[:, 0] = [50, 20]
Z[:, 0] = X[:, 0] + np.random.normal(0, np.sqrt(R), 2)

# 初始化粒子群
for i in range(N):
    P[:, i] = np.random.rand(2) * WorldSize
    dist = np.linalg.norm(P[:, i] - Z[:, 0])
    w[i] = (1 / (np.sqrt(2 * np.pi) * R)) * np.exp(-dist**2 / (2 * R))
PCenter[:, 0] = np.mean(P, axis=1)

# 绘制初始状态
plt.figure(figsize=(10, 5))
plt.scatter(X[0, 0], X[1, 0], color='r', s=30, label='真实位置')
plt.scatter(P[0, :], P[1, :], color='k', s=5, label='粒子群')
plt.scatter(PCenter[0, 0], PCenter[1, 0], color='b', s=25, label='粒子群中心')
plt.legend()
plt.title('初始状态')
plt.xlim(0, WorldSize)
plt.ylim(0, WorldSize)
plt.show()

# 运动和滤波过程
for k in range(1, T):
    X[:, k] = X[:, k-1] + distance * np.array([-np.cos(k * theta), np.sin(k * theta)]) + np.random.normal(0, np.sqrt(Q), 2)
    Z[:, k] = X[:, k] + np.random.normal(0, np.sqrt(R), 2)
    for i in range(N):
        P[:, i] = P[:, i] + distance * np.array([-np.cos(k * theta), np.sin(k * theta)]) + np.random.normal(0, np.sqrt(Q), 2)
        dist = np.linalg.norm(P[:, i] - Z[:, k])
        w[i] = (1 / (np.sqrt(2 * np.pi) * R)) * np.exp(-dist**2 / (2 * R))
    w /= np.sum(w)
    indices = np.random.choice(N, N, p=w)
    P = P[:, indices]
    PCenter[:, k] = np.mean(P, axis=1)

# 绘制轨迹
plt.figure(figsize=(10, 5))
plt.plot(X[0, :], X[1, :], 'r.-', label='真实轨迹')
plt.plot(Z[0, :], Z[1, :], 'g.-', label='测量轨迹')
plt.plot(PCenter[0, :], PCenter[1, :], 'b.-', label='粒子群中心轨迹')
plt.legend()
plt.title('运动轨迹')
plt.xlim(0, WorldSize)
plt.ylim(0, WorldSize)
plt.show()

# 计算并绘制误差
err[0, :] = np.linalg.norm(X - PCenter, axis=0)
err[1, :] = np.linalg.norm(X - Z, axis=0)
plt.figure(figsize=(10, 5))
plt.plot(err[0, :], 'b.-', label='粒子群误差')
plt.plot(err[1, :], 'r.-', label='测量误差')
plt.xlabel('时间步')
plt.ylabel('误差')
plt.title('误差分析')
plt.legend()
plt.show()

# 绘制最后一步的粒子群状态
plt.figure(figsize=(10, 5))
plt.scatter(X[0, -1], X[1, -1], color='r', s=30, label='真实位置 (最终)')
plt.scatter(P[0, :], P[1, :], color='k', s=5, label='粒子群 (最终)')
plt.scatter(PCenter[0, -1], PCenter[1, -1], color='b', s=25, label='粒子群中心 (最终)')
plt.legend()
plt.title('最终状态的粒子群')
plt.xlim(0, WorldSize)
plt.ylim(0, WorldSize)
plt.show()

初始化

我们初始化系统的真实状态、观测状态和粒子群,并为每个粒子分配一个初始权重。

初始化粒子群解释

这部分代码的目的是初始化粒子滤波过程中使用的粒子群。每个粒子代表了对系统状态(在这个案例中是二维位置)的一个假设或猜测。

# 初始化粒子群
for i in range(N):
    P[:, i] = np.random.rand(2) * WorldSize  # 随机初始化粒子位置
    dist = np.linalg.norm(P[:, i] - Z[:, 0])  # 计算粒子与初始观测位置的欧几里得距离
    w[i] = (1 / (np.sqrt(2 * np.pi) * R)) * np.exp(-dist**2 / (2 * R))  # 根据距离计算粒子的权重
PCenter[:, 0] = np.mean(P, axis=1)  # 计算所有粒子位置的平均值,作为粒子群的中心位置
  • 每个粒子的位置P[:, i]是在二维空间内随机生成的,其中每个维度的值介于0WorldSize之间。
  • 然后计算每个粒子与初始观测位置Z[:, 0]之间的距离。这个距离用于评估粒子的假设状态与初始观测状态的一致性。
  • 粒子的权重w[i]根据其到观测位置的距离计算,使用高斯分布公式。距离越小,权重越大,表示该粒子代表的状态与观测数据越吻合。
  • PCenter[:, 0]是所有粒子位置的平均值,代表了初始时刻粒子群的中心位置,可以被视为所有粒子假设的“平均”状态。

运动和滤波过程

对于每一个时间步,我们根据设定的运动模型更新系统的真实状态和观测状态。然后,我们更新每个粒子的位置,根据新的观测数据调整粒子的权重,并进行重采样。

这部分代码模拟了系统状态的更新(基于设定的运动模型)和观测过程,然后根据新的观测数据更新粒子群。

for k in range(1, T):  # 循环遍历每一个时间步
    # 系统状态更新:基于前一时刻的状态、预定的运动方向和距离,以及过程噪声Q来更新当前状态
    X[:, k] = X[:, k-1] + distance * np.array([-np.cos(k * theta), np.sin(k * theta)]) + np.random.normal(0, np.sqrt(Q), 2)
    
    # 观测更新:在当前的真实状态基础上添加测量噪声R来生成观测值
    Z[:, k] = X[:, k] + np.random.normal(0, np.sqrt(R), 2)
    
    # 更新粒子群:对每个粒子,模拟相同的运动方向和距离,并加入过程噪声Q
    for i in range(N):  # 遍历所有粒子
        P[:, i] = P[:, i] + distance * np.array([-np.cos(k * theta), np.sin(k * theta)]) + np.random.normal(0, np.sqrt(Q), 2)
        # 计算粒子与当前观测值的距离
        dist = np.linalg.norm(P[:, i] - Z[:, k])
        # 根据粒子与观测值的距离更新粒子权重,使用高斯分布公式
        w[i] = (1 / (np.sqrt(2 * np.pi) * R)) * np.exp(-dist**2 / (2 * R))
    
    # 权重归一化:确保所有粒子的权重之和为1
    w /= np.sum(w)
    
    # 重采样:基于归一化后的权重随机选择粒子,以便用有较高权重的粒子替换权重低的粒子
    indices = np.random.choice(N, N, p=w)
    P = P[:, indices]
    
    # 更新粒子群中心:计算重采样后的粒子位置平均值,代表粒子群对系统状态的估计
    PCenter[:, k] = np.mean(P, axis=1)

  • 系统状态X[:, k]根据预定义的运动模型更新。在此案例中,模型包括固定的移动距离和旋转角度,以及添加的过程噪声Q

  • 观测Z[:, k]是在新的系统状态基础上加上观测噪声R得到的。

  • 每个粒子P[:, i]也根据相同的运动模型更新,以模拟可能的系统状态。

  • 根据每个粒子与新观测位置的距离,重新计算每个粒子的权重。粒子与观测位置越接近,表明该粒子所代表的状态假设与实际观测数据越吻合,因此其权重越大。权重的计算同样使用高斯分布公式,体现了粒子位置与观测位置之间的关系。

  • 通过归一化处理(w /= np.sum(w)),确保所有粒子的权重之和为1,这样权重可以作为粒子被选中进行下一代采样的概率。

  • 重采样步骤(indices = np.random.choice(N, N, p=w))根据每个粒子的权重随机选择N个粒子组成新的粒子群。这一步骤是粒子滤波的核心,它使得高权重的粒子(即与观测数据匹配度高的状态假设)有更高的机会被保留,而低权重的粒子可能被丢弃。这样做可以使粒子群更集中于高概率区域,提高估计的准确性。

  • 更新粒子群中心PCenter[:, k]为所有粒子的平均位置,这一步相当于得到了该时刻所有粒子位置的统计中心,可以视为当前所有粒子假设的综合预测状态。

这个过程在每个时间步k重复执行,模拟了整个观测周期内系统状态的演化及其与粒子滤波估计之间的动态交互。通过不断更新粒子群,粒子滤波算法能够在有限的信息下对系统状态进行有效估计,并适应系统动态变化和观测噪声。这使得粒子滤波特别适合处理非线性和/或非高斯噪声的系统状态估计问题。

P = P[:, indices]作用

在粒子滤波算法中,P = P[:, indices]这一步执行的是重采样过程的最后一部分,即根据每个粒子的权重来更新(重采样)粒子集合。在这一步骤中,一些权重较小的粒子将被丢弃,而一些权重较大的粒子可能会被复制一次或多次。这样做的目的是为了聚焦于那些与观测数据更吻合的假设(粒子),以提高滤波器的估计精度。

在执行indices = np.random.choice(N, N, p=w)之后,我们得到了一个新的索引数组indices,这个数组的长度仍然是N,但里面的元素是根据权重w随机选择出来的粒子索引。这意味着,如果某个粒子的权重较大,它在indices数组中出现的次数就可能比较多;反之,如果某个粒子的权重较小,它在indices数组中出现的次数就可能较少或者根本不出现。

当执行P = P[:, indices]时,我们根据indices数组中的索引重新组织粒子集合。具体来说,我们从原始的粒子集合P中选出对应indices里面索引的那些粒子,形成新的粒子集合。这一过程可能会导致一些粒子被复制,而一些其他的粒子被丢弃。

举例

假设我们有一个粒子集合P,它包含5个粒子,分别标记为A, B, C, D, E。我们进行一次重采样,并且基于某种方式计算得到的权重,结果选择了如下的索引:

indices = [0, 2, 2, 3, 4]

这表示:

  • 粒子A (索引0)被选择了1次。
  • 粒子B (索引1)没有被选择。
  • 粒子C (索引2)被选择了2次,也就是说它被复制了。
  • 粒子D (索引3)E (索引4)各被选择了1次。

根据indices数组,新的粒子集合P将会是[A, C, C, D, E]。这样,我们就根据每个粒子的权重完成了一次重采样,更新了粒子集合,以便它更好地反映了观测数据和系统状态的后验概率分布。通过重采样,算法可以把注意力集中在那些更有可能代表系统真实状态的粒子上,从而提高状态估计的准确性。

结果展示

通过matplotlib绘图,我们可以直观地看到系统的真实轨迹、测量轨迹、粒子群中心轨迹,以及随时间变化的误差分析。这些图表帮助我们理解粒子滤波器在状态估计中的作用和效果。

这段代码完成了以下任务:

  1. 初始化参数和状态。
  2. 在初始状态绘制了真实位置、粒子群和粒子群中心的图。
  3. 模拟了物体的运动,根据粒子滤波算法更新了粒子的状态。
  4. 绘制了整个运动过程中的真实轨迹、测量轨迹和粒子群中心的轨迹。
  5. 计算并绘制了真实位置与粒子群中心的误差以及真实位置与测量位置的误差。
  6. 在最后一步,展示了真实位置、粒子群和粒子群中心的最终状态。

通过这段代码,您可以直观地看到粒子滤波算法在定位和跟踪运动物体时的效果,包括粒子群如何随时间演化以及其如何逼近真实的运动轨迹。

数学公式

让我们使用数学公式和计算步骤来具体解释粒子滤波的过程。粒子滤波是一种顺序蒙特卡洛方法,用于估计动态系统的状态,特别是在只能间接观测到系统状态的情况下。这里,我们以一个简化的二维空间模型为例,系统的状态由位置坐标表示。

1. 初始状态与粒子初始化
  • 系统的真实初始状态为 X 0 = [ x 0 , y 0 ] T \mathbf{X}_0 = [x_0, y_0]^T X0=[x0,y0]T
  • 观测状态为 Z 0 = X 0 + n R \mathbf{Z}_0 = \mathbf{X}_0 + \mathbf{n}_R Z0=X0+nR,其中 n R ∼ N ( 0 , R ) \mathbf{n}_R \sim \mathcal{N}(0, R) nRN(0,R) 表示测量噪声。
  • 初始化 N N N 个粒子 P i 0 \mathbf{P}_i^0 Pi0,每个粒子随机分布在定义的空间内。对于每个粒子,计算其权重 w i 0 w_i^0 wi0 以反映粒子与初始观测的匹配度:
    w i 0 = 1 2 π R exp ⁡ ( − ∥ P i 0 − Z 0 ∥ 2 2 R ) w_i^0 = \frac{1}{\sqrt{2\pi R}} \exp\left(-\frac{\|\mathbf{P}_i^0 - \mathbf{Z}_0\|^2}{2R}\right) wi0=2πR 1exp(2RPi0Z02)
2. 系统状态更新

对于每一个时间步 (k),系统的真实状态更新为:

X k = X k − 1 + d k + n Q \mathbf{X}_k = \mathbf{X}_{k-1} + \mathbf{d}_k + \mathbf{n}_Q Xk=Xk1+dk+nQ

  • d k \mathbf{d}_k dk 表示根据运动模型预计的状态变化,例如距离 distance \text{distance} distance 乘以方向 [ − cos ⁡ ( k θ ) , sin ⁡ ( k θ ) ] T [-\cos(k\theta), \sin(k\theta)]^T [cos(kθ),sin(kθ)]T
  • n Q ∼ N ( 0 , Q ) \mathbf{n}_Q \sim \mathcal{N}(0, Q) nQN(0,Q) 表示过程噪声。
3. 观测更新

观测值 Z k \mathbf{Z}_k Zk 为真实状态加上观测噪声:

Z k = X k + n R \mathbf{Z}_k = \mathbf{X}_k + \mathbf{n}_R Zk=Xk+nR

4. 粒子更新与重采样
  • 粒子更新:对于每个粒子,根据相同的运动模型和过程噪声进行更新:

    P i k = P i k − 1 + d k + n Q \mathbf{P}_i^k = \mathbf{P}_i^{k-1} + \mathbf{d}_k + \mathbf{n}_Q Pik=Pik1+dk+nQ

  • 权重更新:更新每个粒子的权重以反映其与新观测的匹配程度:

    w i k = 1 2 π R exp ⁡ ( − ∥ P i k − Z k ∥ 2 2 R ) w_i^k = \frac{1}{\sqrt{2\pi R}} \exp\left(-\frac{\|\mathbf{P}_i^k - \mathbf{Z}_k\|^2}{2R}\right) wik=2πR 1exp(2RPikZk2)

  • 权重归一化:确保所有权重之和为 1:

    w i k = w i k ∑ j = 1 N w j k w_i^k = \frac{w_i^k}{\sum_{j=1}^N w_j^k} wik=j=1Nwjkwik

  • 重采样:根据权重 (w_i^k) 从当前粒子集中选择 (N) 个粒子,高权重的粒子有更高概率被选中多次。

5. 状态估计

粒子群中心,即所有粒子的加权平均位置,给出了对系统状态的估计:

X ^ k = ∑ i = 1 N w i k P i k \mathbf{\hat{X}}_k = \sum_{i=1}^N w_i^k \mathbf{P}_i^k X^k=i=1NwikPik

通过这一序列的步骤,粒子滤波利用观测数据来连续更新对系统状态的估计,同时考虑了过程和观测的不确定性。

结论

粒子滤波器是一种非常灵活和强大的工具,尤其适用于处理非线性和非高斯问题。通过本例的模拟,我们可以看到,即使在存在噪声的情况下,粒子滤波器也能有效地跟踪和估计系统的状态。随着粒子数量的增加,估计的准确性通常会提高,但同时也会增加计算的复杂性。因此,在实际应用中,需要根据问题的特性和计算资源,适当选择粒子数量。

如何应用

要整合WiFi定位和PDR(Pedestrian Dead Reckoning)数据使用粒子滤波进行室内定位,整个过程可以概括为以下几个步骤:

1. 导入必要的库

import numpy as np
import matplotlib.pyplot as plt
from math import cos, sin, sqrt, pi

2. 定义获取WiFi位置和PDR步长与方向的函数

def get_wifi_position():
    # 此函数应返回基于WiFi定位的当前位置估计(x, y)
    # 例如,返回 (10, 20),在实际应用中,这里会根据WiFi信号强度来计算
    return 10, 20

def get_pdr_step():
    # 此函数应返回基于PDR的步长和方向(距离, 方向角度)
    # 例如,返回步长为0.5米,方向为0度(向北)
    return 0.5, 0

3. 初始化参数和状态

N = 200  # 粒子总数
Q = np.diag([0.1, 0.1])**2  # 过程噪声协方差矩阵,调整以匹配PDR步进的不确定性
R = np.diag([2, 2])**2  # 测量噪声协方差矩阵,调整以匹配WiFi定位精度
T = 50  # 测量时间步数
WorldSize = 100  # 模拟环境的大小

X = np.zeros((2, T))  # 系统状态
Z = np.zeros((2, T))  # 观测状态
P = np.random.rand(2, N) * WorldSize  # 粒子位置
w = np.zeros(N)  # 粒子权重

4. 粒子滤波主循环

for k in range(1, T):
    wifi_x, wifi_y = get_wifi_position()
    step_length, step_direction = get_pdr_step()
    
    # 更新粒子群
    for i in range(N):
        dx = step_length * cos(step_direction) + np.random.normal(0, sqrt(Q[0,0]))
        dy = step_length * sin(step_direction) + np.random.normal(0, sqrt(Q[1,1]))
        P[:, i] += np.array([dx, dy])
        
        # 计算每个粒子与WiFi位置的距离
        dist = sqrt((P[0, i] - wifi_x)**2 + (P[1, i] - wifi_y)**2)
        w[i] = (1 / sqrt(2 * pi * R[0,0])) * np.exp(-dist**2 / (2 * R[0,0]))
        
    # 归一化权重
    w /= np.sum(w)
    
    # 重采样
    indices = np.random.choice(N, N, p=w)
    P = P[:, indices]
    
    # 计算并保存粒子群中心为系统状态的估计
    X[:, k] = np.average(P, axis=1, weights=w)

5. 结果可视化(可选)

plt.figure()
plt.plot(X[0, :], X[1, :], label='Estimated Trajectory')
plt.scatter(wifi_x, wifi_y, c='r', label='WiFi Position')
plt.title('Particle Filter for WiFi-PDR Fusion Indoor Positioning')
plt.xlabel('X position')
plt.ylabel('Y position')
plt.legend()
plt.show()

请注意,这里的get_wifi_position()get_pdr_step()函数需要根据实际情况来实现,比如,从传感器或之前处理好的数据中获取信息。此外,过程噪声Q和测量噪声R的设定需要根据实际应用中PDR和WiFi定位的精确度来调整。

每一步的粒子集合并不是完全相互独立的

在粒子滤波中,每一步的粒子集合并不是完全相互独立的。粒子滤波的关键在于通过迭代过程,利用观测数据来调整粒子的权重,并通过重采样来更新粒子集合。以下是粒子集合在粒子滤波中的相关性质:

  1. 初始依赖性:在粒子滤波的开始,所有粒子是从初始状态的概率分布中抽取的,这意味着初始时刻的粒子集合是相互独立的。

  2. 预测步骤中的依赖性:在预测步骤中,每个粒子根据状态转移模型独立地更新其位置。然而,由于这些粒子都是基于同一模型进行更新的,它们在更新后可能不会保持完全的独立性,尤其是在状态转移模型具有某些依赖性或相关性时。

  3. 更新步骤中的依赖性:当新的观测数据到来时,所有粒子的权重都会根据这些数据进行调整。这个过程是相互依赖的,因为每个粒子的权重更新都依赖于观测数据。

  4. 重采样步骤中的依赖性:在重采样步骤中,粒子集合被更新为新的集合,其中粒子的选择是基于它们的权重。这意味着重采样后的粒子集合在概率上依赖于上一步的粒子权重,而不是完全独立。

  5. 迭代过程中的依赖性:粒子滤波是一个迭代过程,每一步的粒子集合都是基于前一步的粒子集合和观测数据生成的。因此,整个粒子集合在时间序列上是相互依赖的。

  6. 多样性与独立性:尽管粒子集合在每一步都不是完全独立的,但粒子滤波的目的是通过重采样来保持粒子的多样性,避免所有粒子都集中在状态空间的某个小区域,这被称为“样本退化”。

总结来说,粒子滤波中的粒子集合在每一步都是基于前一步的状态和观测数据进行更新的,因此它们在概率上是相互依赖的。然而,通过重采样步骤,算法试图维持粒子集合的多样性,以确保算法能够有效地近似系统状态的概率分布。

  • 18
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值