两个矩阵间的乘法
struct node{
int dp[100][100];
};
node jz(int n,node a,node b)
{
node ans1;
memset(ans1.dp,0,sizeof(ans1.dp));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
{
ans1.dp[i][j]=(ans1.dp[i][j]+a.dp[i][k]*b.dp[k][j])%mod;
}
return ans1;
}
矩阵的快速幂
如果快速幂不懂得可以点 快速幂取模详解
node ksqm(int n,node a,int cf)
{
node ans;
memset(ans.dp,0,sizeof(ans.dp));
for(int i=1;i<=n;i++)
ans.dp[i][i]=1;
while(cf)
{
if(cf&1)
ans=jz(n,ans,a);
a=jz(n,a,a);
cf>>=1;
}
return ans;
}
例题
Tr A HDU - 1575(矩阵的迹)
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
Sample Output
2
2686
#include<bits/stdc++.h>
using namespace std;
#define long long ll;
const int mod=9973;
struct node{
int dp[100][100];
};
node jz(int n,node a,node b)
{
node ans1;
memset(ans1.dp,0,sizeof(ans1.dp));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
{
ans1.dp[i][j]=(ans1.dp[i][j]+a.dp[i][k]*b.dp[k][j])%mod;
}
return ans1;
}
node ksqm(int n,node a,int cf)
{
node ans;
memset(ans.dp,0,sizeof(ans.dp));
for(int i=1;i<=n;i++)
ans.dp[i][i]=1;
while(cf)
{
if(cf&1)
ans=jz(n,ans,a);
a=jz(n,a,a);
cf>>=1;
}
return ans;
}
int main()
{
int t;
cin>>t;
while(t--)
{
int n,k;
cin>>n>>k;
node an;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
cin>>an.dp[i][j];
}
an=ksqm(n,an,k);
int jl=0;
for(int i=1;i<=n;i++)
{
jl=(jl+an.dp[i][i])%mod;
}
cout<<jl<<endl;}
return 0;
}