矩阵快速幂模板与例题

7 篇文章 0 订阅
1 篇文章 0 订阅

两个矩阵间的乘法

struct node{
int dp[100][100];	
};

node jz(int n,node a,node b)
{
	node ans1;
memset(ans1.dp,0,sizeof(ans1.dp));
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	for(int k=1;k<=n;k++)
	{
		ans1.dp[i][j]=(ans1.dp[i][j]+a.dp[i][k]*b.dp[k][j])%mod;
	}

	return ans1;
}

矩阵的快速幂
如果快速幂不懂得可以点 快速幂取模详解

node ksqm(int n,node a,int cf)
{
	node ans;
	memset(ans.dp,0,sizeof(ans.dp));
	for(int i=1;i<=n;i++)
	ans.dp[i][i]=1;
	
	while(cf)
	{
		if(cf&1)
		 ans=jz(n,ans,a);
	    a=jz(n,a,a);
	    cf>>=1;

	}
	return ans;
}

例题

Tr A HDU - 1575(矩阵的迹)

A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
Sample Output
2
2686

#include<bits/stdc++.h>
using namespace std;
#define long long ll;
const int mod=9973;
struct node{
int dp[100][100];	
};

node jz(int n,node a,node b)
{
	node ans1;
memset(ans1.dp,0,sizeof(ans1.dp));
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	for(int k=1;k<=n;k++)
	{
		ans1.dp[i][j]=(ans1.dp[i][j]+a.dp[i][k]*b.dp[k][j])%mod;
	}

	return ans1;
}

node ksqm(int n,node a,int cf)
{
	node ans;
	memset(ans.dp,0,sizeof(ans.dp));
	for(int i=1;i<=n;i++)
	ans.dp[i][i]=1;
	
	while(cf)
	{
		if(cf&1)
		 ans=jz(n,ans,a);
	    a=jz(n,a,a);
	    cf>>=1;

	}
	return ans;
}
int main()
{
	int t;
	cin>>t;
	while(t--)
	{

	int n,k;
	cin>>n>>k;
	node an;
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	{
		cin>>an.dp[i][j];
	
	}
    an=ksqm(n,an,k);
    int jl=0;
	for(int i=1;i<=n;i++)
	{
		jl=(jl+an.dp[i][i])%mod;
	}
	cout<<jl<<endl;}
	return 0;
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值