基于python的股票客户流失数据分析模型

本文介绍了一个利用Python进行股票客户流失数据分析的案例,通过读取数据、特征和目标变量划分、搭建逻辑回归模型,以及使用ROC曲线评估模型效果。最终,模型的AUC值为0.81,表明模型具有较好的预测性能。
摘要由CSDN通过智能技术生成

目录
1.案例背景 2
2. 读取数据 2
3. 划分特征变量和目标变量 3
4. 模型的搭建和使用 3
5. 模型的使用 4
6. ROC曲线对模型的评估 7
7.总结 10
8.参考文献 10
9.致谢 10

1.案例背景
在进行一笔股票交易时候,交易者(股民)都要给其账户所在的证券公司支付一些手续费,虽然单笔手续费不是很高,但是股票市场的每日都有巨额的成交量,每一笔交易的手续费汇总起来,数量相当可观,这部分收入对于一个证券公司来说非常重要的,甚至有时候可以占到营业总收入的50%以上,因此,证券公司对于客户(交易者)的忠诚和活跃度是很看重的。
如果一个客户不再通过某个证券公司交易,即该客户流失了,那么证券公司便损失一个收入来源,因此,证券公司搭建一套客户流失预警模型来预测客户是否流失,并对流失概率较大的客户采集相应的挽回措施,因为通常情况下,获得新客户成本比保留现有客户成本要高得多。
2.读取数据
代码:
import pandas as pd
df = pd.read_excel(r"D://Python//股票客户流失.xlsx")
df.head()
数据读取结果展示:
在这里插入图片描述

3.划分特征变量和目标变量
通过下列代码将特征变量和目标变量单独提取出

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鹏鹏写代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值