目录
1.案例背景 2
2. 读取数据 2
3. 划分特征变量和目标变量 3
4. 模型的搭建和使用 3
5. 模型的使用 4
6. ROC曲线对模型的评估 7
7.总结 10
8.参考文献 10
9.致谢 10
1.案例背景
在进行一笔股票交易时候,交易者(股民)都要给其账户所在的证券公司支付一些手续费,虽然单笔手续费不是很高,但是股票市场的每日都有巨额的成交量,每一笔交易的手续费汇总起来,数量相当可观,这部分收入对于一个证券公司来说非常重要的,甚至有时候可以占到营业总收入的50%以上,因此,证券公司对于客户(交易者)的忠诚和活跃度是很看重的。
如果一个客户不再通过某个证券公司交易,即该客户流失了,那么证券公司便损失一个收入来源,因此,证券公司搭建一套客户流失预警模型来预测客户是否流失,并对流失概率较大的客户采集相应的挽回措施,因为通常情况下,获得新客户成本比保留现有客户成本要高得多。
2.读取数据
代码:
import pandas as pd
df = pd.read_excel(r"D://Python//股票客户流失.xlsx")
df.head()
数据读取结果展示:
3.划分特征变量和目标变量
通过下列代码将特征变量和目标变量单独提取出