单细胞聚类方法

Partitioning-based clustering

kmeans:K均值
论文链接

res <- kmeans(t(data), centers = 9)
adjustedRandIndex(res$cluster, meta$label)
plot(res$centers, col = topo.colors(4))

tsne_out <- Rtsne(data)
plot(tsne_out$Y, col = topo.colors(4))

SAIC:在聚类迭代过程中结合k-means和ANOVA

SCUBA:kmeans;使用gap statistics 识别bifurcation events

scVDMC : single-cell variance-driven multi-task clustering

pcaReduce
论文链接

library(pcaReduce)
res <- PCAreduce(t(data),
                 nbt = 1,
                 q = 7,
                 method = "S")
res[[1]]
adjustedRandIndex(res[[1]][, 1], meta$label)

k-medoids

res <- pamk(data = t(data), krange = 7)
adjustedRandIndex(res$pamobject$clustering, meta$label)

层次聚类

BackSPIN:two-way biclustering algorithm;

cellTree:构建最小生成树;

CIDR:缺失值填补
论文链接

#rows correspond to features (genes, transcripts, etc) and the columns correspond to cells
library(cidr)
load("/Biase.Rdata")

cellType <- factor(meta$label)
types <- levels(cellType)

scols <-
  c("red",
    "blue"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

eynoZzzzc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值