分享一个不错的数据分析实战案例【全程附图】EXCEL

大家早上好,本人姓吴,如果觉得文章写得还行的话也可以叫我吴老师。欢迎大家跟我一起走进数据分析的世界,一起学习!

感兴趣的朋友可以关注我或者我的数据分析专栏,里面有许多优质的文章跟大家分享哦。

完整数据及操作记录数据的下载链接放在文末。


项目简介

利用最近一次的营销活动的信息,分析什么对推销结果的影响最大,如何确定银行定期产品推销中最具价值的客户。

PS: 这是最初上传到UCI机器学习库的经典营销银行数据集,该数据集提供了有关金融机构营销活动的信息,但在本篇博客当中我们仅会用到EXCEL进行数据分析,使用机器学习进行分析我们留到之后再介绍。

1 数据理解

字段名理解
age年龄(数值)
job职业(分类:admin, bluecollar, entrepreneur, housemaid, management, retired, self-employed, services,student, technician, unemployed, unknown)
marital婚姻状况(分类:divorced, married, single, unknown)
education学历(分类:primary, secondary, tertiary and unknown)
default失信状况(分类:yes, no)
balance资产余额(数值)
housing房屋贷款(分类:yes, no, unknown)
loan个人贷款(分类:yes, no, unknown)
contact联系方式(分类:cellular, telephone)
day最后一次电话营销的日期(数值:月份中的哪一天)
month最后一次电话营销的月份(分类:jan, feb, mar, apr,…,nov, dev)
duration通话时长(数值:以秒为单位,0的话最终输出结果必然是0)
campaign联系次数(数值:此活动中联系该客户的次数)
pdays距上次联系完客户后的天数(数值:999代表未联系过该客户)
previous这次活动前与这位客户联系的次数(数值)
poutcome上次营销的结果(分类:yes, no, unknown)
deposit定期存款(分类:yes, no)客户是否已购买定期存款

2 数据清洗

此次数据除了部分未知数据(unknown),其它暂不需要清洗。

3 确定思路

首先这个balance,我不太确定具体指什么,目前推测应该是客户存放在银行的资金(负数应该代表欠了银行钱吧哈哈),总不可能是代表这个人的个人全部资产吧(银行得不到这方面的信息),所以暂时留着。

然后这个day和month,如果说有年份的话还能将其分为周一周二等,但是没有,数据集出处也没有明确标注是哪一年,所以如果用来分析的话可能也只能按月来分析,但按以往的经验和数据量的大小来看,应该用处不大。

至于duration的话,因为当duration为0时结果必然是失败的,说明这个数据的记录应该是银行人员在营销完记录下的,而现实中你无法在营销前就得到该数据,所以这个数据没有用。

那么接下来我们如何下手呢?
首先我们可以将数据分为两种类型:
1、客户的个人信息
2、营销人员与客户的联系信息
那么接下来我们可以按照这两种数据提出几个问题:
1、用户的个人信息是否对结果有着明显的影响(哪些属性影响大)?
2、营销人员的行为是否对结果有着明显的影响(哪些属性影响大)?

4 分析过程

4.1 年龄

此时我们探究年龄与结果是否有明显的影响。
首先我们可以查看以下数据集中的年龄统计分布情况:

在这里插入图片描述
可以发现共有11162名最小值为18,最大值为95,最小值为18。我们可以按照我们的认知,将客户分为几个不同年龄阶段。

在这里插入图片描述

分组的话主要是用到了VLOOKUP函数进行分组。
在这里插入图片描述
此时得到分组后,我们可以生成数据透视表来查看情况。

在这里插入图片描述
从图当中我们可以明显的看到在老年人群体中最终购买了定期存款的比例最大,为80.2%,而其他群体最终的结果并没有明显的差距。

4.2 失信状况default

在这里插入图片描述
有失信记录的在结果上没有什么差别,无失信记录的最终购买的比例低于没有购买的,但是数据量较小,不能作为参考。

4.3 个人资产balance

同年龄一样,balance是数值型,因而最好先将其分组。

在这里插入图片描述
这里我主要采用箱型图来查看balance数据的分布,以便后续进行分组。
可以看到的是数据主要是集中在0-2000之间,有少部分低于该区间,然后有部分大于该区间。

按下图进行分组:

在这里插入图片描述
结果如下:

在这里插入图片描述
这里主要可以发现的是负资产的客户最终购买的可能性较低,而资产较高的客户购买的可能性稍微大些。

4.4 housing&loan

接下来的房屋贷款和个人贷款,这个我打算放在一起进行分析。
具体如下:

在这里插入图片描述
可以看到无房贷和无个人贷款的客户最终购买的可能性最大,为59.65%。其余的只要有任何一个贷款购买的可能性就比较低。

4.5 上次营销结果poutcome

同理,生成透视图查看一下:

在这里插入图片描述
(包括这次在内,当生成透视图时发现有部分数据(如unknown、other)是我们不想要的,记得筛选掉)

从图中我们可以明显发现,上次营销成功的客户这次购买的可能性也极大。

5 总结

结论:从上述结果我们可以发现,老年人且上次营销成功的群体最有可能购买产品,而有贷款且低资产的用户购买的可能性会很小。

PS: 这次没有其他过多的因素考量,如产品实际的业务情况、数据具体来源等,而我主要也是利用自己以往的经验来选取数据进行分析,没有做过多的分析比较。

代码下载链接,有需要的请自行提取,不想hua前的朋友,可评论同我说,我会回复你,但可能会比较慢。祝好!
https://download.csdn.net/download/qq_44186838/86799994


推荐关注的专栏

👨‍👩‍👦‍👦 机器学习:分享机器学习实战项目和常用模型讲解
👨‍👩‍👦‍👦 数据分析:分享数据分析实战项目和常用技能整理


关注我,了解更多相关知识!


CSDN@报告,今天也有好好学习

<think>好的,我现在需要帮助用户找到关于用户数据分析实战项目或案例教程。根据用户提供的引用内容,我需要先仔细分析这些引用中的信息,看看哪些适合推荐,同时结合用户的需求,整理出合适的项目或案例。 首先,引用[1]提到的是淘宝用户行为分析的案例,使用了Power BI。这是一个电商数据分析实战项目,适合用户行为分析的方向。用户可能对电商数据感兴趣,特别是如何利用工具进行行为分析。 引用[2]是关于EXCEL数据分析实例,探讨客户个人信息和营销行为的影响。这个案例可能比较基础,适合刚入门的用户,使用EXCEL进行分析,步骤详细,有附图说明,容易上手。 引用[3]涉及Python数据分析项目,具体分析视频互动数据,比如弹幕数据的分组统计。这里用到了Python的pandas库,适合有一定编程基础的用户,尤其是对视频或用户互动数据感兴趣的人。 引用[4]提到了多个Python数据分析项目,包含用户行为特征和留存率分析,涉及A/B测试等参数的影响。项目数量多,数据可下载,适合希望深入不同场景的用户,尤其是移动应用的用户行为分析。 接下来,我需要将这些信息整合,分门别类地推荐给用户。用户可能需要不同工具(如Power BI、Excel、Python)和不同领域(电商、APP、视频)的案例。因此,我应该将案例按工具或领域分类,并简要说明每个案例的内容、工具、适用场景和难度,方便用户选择。 同时,用户可能还需要知道如何获取这些资源,比如是否有代码和数据可供下载,所以需要提到引用中的相关信息,如引用[4]的数据可下载,引用[3]的Python代码示例。 最后,根据用户的需求生成相关问题,帮助他们进一步探索,比如工具选择、方法比较、数据获取途径等。这些问题应该与用户数据分析实战相关,并引导他们深入思考。</think>### 用户数据分析实战项目推荐 #### 一、电商领域分析 1. **淘宝用户行为分析(Power BI)** - **内容**:分析用户点击、加购、下单等行为,挖掘用户活跃规律和商品偏好。 - **工具**:Power BI - **适用场景**:电商运营优化、用户分层策略制定 - **案例特点**:包含完整分析框架,从数据清洗到可视化全流程[^1] - **难度**:★★★ - **参考链接**:[淘宝用户行为分析案例教程](示例链接) --- #### 二、基础分析工具案例 2. **客户营销效果分析(Excel)** - **内容**:探究用户年龄、职业属性对营销结果的影响,分析电话沟通频率与成功率的关系。 - **工具**:Excel(数据透视表、可视化图表) - **适用场景**:传统行业客户转化率优化 - **案例特点**:提供分步操作截图,适合零基础入门[^2] - **难度**:★☆ - **参考链接**:[EXCEL数据分析实例](示例链接) --- #### 三、编程进阶项目 3. **视频用户互动分析(Python)** - **内容**:通过弹幕数据统计用户观看行为,分析热门视频节点与用户留存关系。 - **工具**:Python(Pandas、Matplotlib) - **适用场景**:在线教育/视频平台用户体验优化 - **代码示例**: ```python danmu.groupby('视频进度【时分】')[['id']].count().sort_values('id',ascending=False) ``` - **数据来源**:视频播放日志[^3] - **难度**:★★★☆ 4. **APP用户留存率分析(Python)** - **内容**:分析A/B/C/D/E/F六个功能参数对用户次日、7日留存的影响。 - **工具**:Python(Seaborn、Statsmodels) - **数据集**:包含10万+用户行为记录(可直接下载)[^4] - **输出成果**:留存率漏斗模型、功能参数影响力排序 - **难度**:★★★★ --- #### 四、扩展学习建议 1. **数据获取渠道**: - Kaggle(电商、社交平台公开数据集) - 和鲸社区(国内行业数据) - 官方提供的数据包(如引用[4]的111个项目数据集) 2. **方法论学习重点**: - 用户行为路径分析(桑基图应用) - 基于$RFM$模型的用户价值分层 - 假设检验在行为差异分析中的应用(如独立样本T检验) ---
评论 153
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

报告,今天也有好好学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值