英文事件抽取

英文事件抽取

转载连接:喵小姐的总结
基于特征的方法
2006_ACL_The Stages of Event Extraction
2008_ACL_Refining Event Extractionthrough Cross-document Inference
2010_ACL_Using Document Level Cross-Event Inference to IMprove Event Extraction
2011_ACL_Using Cross-Entity Inference to Improve Event Extraction
2013_ACL_Joint Event Extraction via Structured Prediction with Global Features
2016_AAAI_A Probabilistic Soft Logic Based Approach to Exploiting Latent and Global Information in Event Classification

基于表示的神经网络方法
2015_ACL_Event Detection and Domain Adaptation with Convolutional Neural Networks
2015_ACL_Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks
2016_ACL_A Language-Independent Neural Network for Event Detection
2016_ACL_Leveraging FrameNet to Improve Automatic Event Detection
2016_EMNLP_Modeling Skip-Grams for Event Detection with Convolutional Neural Networks
2016_NAACL_Joint Event Extraction via Recurrent Neural Networks
2016_CCL_Event Extraction via Bidirectional Long Short-Term Memory Tensor Neural Networks
2017_ACL_Automatically Labeled Data Generation for Large Scale Event Extraction
2017_ACL_Exploiting Argument Information to Improve Event Detection via Supervised Attention Mechanisms
2017_CCL_Improving Event Detection via Information Sharing among Related Event Types

2018_AAAI_Event Detection via Gated Multilingual Attention Mechanism
2018_AAAI_Graph Convolutional Networks with Argument-Aware Pooling for Event Detection
2018_AAAI_Jointly Extracting Event Triggers and Arguments by Dependency-Bridge RNN and Tensor-Based Argument Interaction
2018_ACL_Self-regualation: Employing a Generative Adversarial Network to Improve Event Detection
2018_ACL_Document Embedding Enhanced Event Detection with Hierarchical and Supervised Attention
2018_ACL_Zero-Shot Transfer Learning for Event Extraction
2018_EMNLP_Jointly Multiple Events Extraction via Attention-based Graph Information Aggregation
2018_EMNLP_Collective Event Detection via Hierarchical and Bias Tagging Networks with Gated Multi-level Attention Mechanisms
2018_EMNLP_Exploiting Contextual Information via Dynamic Memory Network for Event Detection

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值