已知c为奇数,a,b奇偶性不同
假设本原勾股数组(a,b,c)中,a为奇数,b为偶数
设
c
=
2
∗
k
+
1
c = 2*k+1
c=2∗k+1
则
c
2
=
4
∗
k
2
+
4
∗
k
+
1
c^2 = 4*k^2 +4*k + 1
c2=4∗k2+4∗k+1
是奇数
假设a,b都不为3的倍数
设
a = 3 ∗ x + m a = 3*x + m a=3∗x+m
b = 3 ∗ y + n b = 3*y + n b=3∗y+n
if x is odd
m = 2 m = 2 m=2
if x is even
m = 1 m = 1 m=1
if y is odd
m = 1 m = 1 m=1
if y is even
m = 2 m = 2 m=2
无论x与y的哪种奇偶组合,等式
a 2 + b 2 = c 2 a^2 + b^2 = c^2 a2+b2=c2
两端奇偶性都不相同
于是a,b中至少有一个为3的倍数