使用 PLS 回归进行近红外光谱的异常值检测

本文介绍了如何使用部分最小二乘(PLS)回归进行近红外光谱数据的异常值检测。通过计算Q-residuals和Hotelling’s T-squared指标,识别并排除那些不遵循总体趋势的异常数据点,从而提高模型的预测能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在光谱数据中,并非每个数据点都是有效的,因此,在构建模型时找到与大部分数据不符合的数据

点是一种必要的操作。这些数据我们称之为异常值。在这篇文章中,我们将使用PLS回归进行红外

光谱数据的异常值检测。

异常值评估


面对冗余繁杂的光谱数据,去除异常值毫无疑问成为一种必要的过程。一个疑问随之而来,我们如

何确定数据是异常值?很多异常样本是无法通过人眼观测的。


从宏观来讲,任何不遵循总体趋势的数据点我们都可以称之为异常点。


我们去一个比较直观的例子,如下图所示,散点图中的数据点。异常值游离于集体之外,模型无法

很好的描述这些数据点。

import numpy as np
import matplotlib.pyplot as plt

# 设置数据的参数
mean = 0
std = 1
num_samples = 100
num_outliers = 5
outlier_value = [10,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子虚先生√

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值