朴素贝叶斯(一)

贝叶斯定理

贝叶斯公式:
在这里插入图片描述
其中,P(A|B)是指事件B发生的情况下事件A发生的概率(条件概率).在贝叶斯定理中,每个名词都有约定俗成的名称:

  • P(A|B)是已知B发生后A的条件概率,也由于得知B的取值而被称作A的后验概率;
  • P(A)是A的先验概率(或边缘概率).之所以称为"先验"是因为它不考虑任何B方面的因素;
  • P(B|A)是已知A发生后B的条件概率,也由于得知A的取值而成称作B的后验概率;
  • P(B)是B的先验概率(或边缘概率).

贝叶斯定理可以表述为:

后验概率 = (似然性 * 先验概率)/标准化常量

也就是说,后验概率与先验概率和相似度的乘积成正比.
同时,分母P(B),可以根据全概率公式分解为:
在这里插入图片描述

条件独立性假设

如果P(X,Y|Z)=P(X|Z)P(Y|Z),或等价地P(X|Y,Z)=P(X|Z),则称事件X,Y对于给定事件Z是条件独立的,也就是说,当Z发生时,X发生与否与Y发生与否是无关的。

应用在自然语言处理中,就是说在文章类别确定的条件下,文章的各个特征(单词)在类别确定的条件下是独立的,并不相关,用通俗的话说,在文章类别确定的条件下,文章各个词之间出现与否没有相关性(事实上,并不成立).这是一个非常强的假设,但对问题的求解来说变得更加简单.

分类器

在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就是先验为高斯分布的朴素贝叶斯,MultinomialNB就是先验为多项式分布的朴素贝叶斯,而BernoulliNB就是先验为伯努利分布的朴素贝叶斯。

这三个类适用的分类场景各不相同,一般来说,如果样本特征的分布大部分是连续值,使用GaussianNB会比较好。如果如果样本特征的分大部分是多元离散值,使用MultinomialNB比较合适。而如果样本特征是二元离散值或者很稀疏的多元离散值,应该使用BernoulliNB。

GaussianNB假设特征的先验概率为正态分布

在这里插入图片描述

import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
Y = np.array([1, 1, 1, 2, 2, 2])
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
#拟合数据
clf.fit(X, Y)
print ("==Predict result by predict==")
print (clf.predict([[-0.8, -1]]))
print ("==Predict result by predict_proba==")
print (clf.predict_proba([[-0.8, -1]]))
print ("==Predict result by predict_log_proba==")
print (clf.predict_log_proba([[-0.8, -1]]))

"""
==Predict result by predict==
[1]
==Predict result by predict_proba==
[[9.99999949e-01 5.05653254e-08]]
==Predict result by predict_log_proba==
[[-5.05653266e-08 -1.67999998e+01]]
"""
# 导入算法包以及数据集
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.naive_bayes import MultinomialNB,BernoulliNB,GaussianNB

# 载入数据
iris = datasets.load_iris()
x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target) 

mul_nb = GaussianNB()
mul_nb.fit(x_train,y_train)

print(classification_report(mul_nb.predict(x_test),y_test))

print(confusion_matrix(mul_nb.predict(x_test),y_test))

在这里插入图片描述

MultinomialNB假设特征的先验概率为多项式分布

在这里插入图片描述

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.naive_bayes import MultinomialNB,BernoulliNB,GaussianNB

# 载入数据
iris = datasets.load_iris()
x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target) 

mul_nb = MultinomialNB()
mul_nb.fit(x_train,y_train)

print(classification_report(mul_nb.predict(x_test),y_test))

print(confusion_matrix(mul_nb.predict(x_test),y_test))

在这里插入图片描述

BernoulliNB假设特征的先验概率为二元伯努利分布

在这里插入图片描述

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.naive_bayes import MultinomialNB,BernoulliNB,GaussianNB

# 载入数据
iris = datasets.load_iris()
x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target) 

mul_nb = BernoulliNB()
mul_nb.fit(x_train,y_train)

print(classification_report(mul_nb.predict(x_test),y_test))

print(confusion_matrix(mul_nb.predict(x_test),y_test))

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

!一直往南方开.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值