【机器学习】朴素贝叶斯算法及其应用探索


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


朴素贝叶斯算法及其应用探索

在这里插入图片描述

引言

在机器学习的广阔领域中,朴素贝叶斯分类器以其实现简单、计算高效和解释性强等特点,成为了一颗璀璨的明星。尽管名字中带有“朴素”二字,它在文本分类、垃圾邮件过滤、情感分析等多个领域展现出了不凡的效果。本文将深入浅出地介绍朴素贝叶斯的基本原理、数学推导、优缺点以及实际应用案例,旨在为读者构建一个全面而深刻的理解框架。

1. 朴素贝叶斯基本概念

1.1 贝叶斯定理回顾

一切始于贝叶斯定理,它是概率论中的一个核心公式,描述了两个条件概率之间的关系。给定事件A和B,贝叶斯定理表达为:

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

其中,(P(A|B))是在已知B发生的情况下A发生的概率,(P(B|A))是A发生时B发生的概率,(P(A))和(P(B))分别是A和B独立发生的概率。

1.2 朴素贝叶斯模型概述

朴素贝叶斯分类器基于贝叶斯定理,通过学习训练数据集中的特征与类别之间的概率关系来进行预测。其“朴素”之处在于假设特征之间相互独立,这一简化虽然在现实中很难严格成立,但却大大简化了计算复杂度,使得模型在很多情况下依然能够获得较好的性能。

2. 数学推导

2.1 多项式模型

对于离散特征,我们通常采用多项式模型。假设有一个文档分类问题,文档由词构成,每个词可以看作一个特征。设(c)为类别,(x_i)为第(i)个特征(词),则文档属于类别(c)的概率可以通过以下公式计算:

P ( c ∣ x 1 , x 2 , . . . , x n ) = P

评论 136
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鑫宝Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值