

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"
文章目录
BP神经网络正向计算
1. 引言
反向传播(Backpropagation,简称BP)神经网络是人工神经网络中最常用和最基础的模型之一。虽然BP神经网络以其反向传播算法而闻名,但正向计算同样是网络运行的关键组成部分。本文将详细介绍BP神经网络的正向计算过程,包括其基本原理、数学表示和实现方法。
2. BP神经网络结构回顾
在深入讨论正向计算之前,让我们先回顾一下BP神经网络的基本结构:
- 输入层:接收外部输入信号
- 隐藏层:对输入信息进行非线性变换(可以有多个)
- 输出层:产生网络的最终输出
每一层都由若干个神经元组成,相邻层之间的神经元通过权重连接。
3. 正向计算的基本原理
BP神经网络的正向计算是指信息从输入层经过隐藏层,最后到达输出层的过程。在这个过程中,每一层的神经元都会接收上一层的输出,进行加权求和,然后通过激活函数产生自己的输出。
正向计算的主要步骤如下:
- 输入层接收外部信号
- 计算隐藏层的输入和输出
- 计算输出层的输入和输出
4. 数学表示
为了更好地理解正向计算过程,我们来看一下其数学表示。假设我们有一个三层神经网络(输入层、一个隐藏层、输出层)。
4.1 符号定义
- x x x: 输入向量
- W ( 1 ) W^{(1)} W(1): 输入层到隐藏层的权重矩阵
- b ( 1 ) b^{(1)} b(1): 隐藏层的偏置向量
- W ( 2 ) W^{(2)} W(2): 隐藏层到输出层的权重矩阵
- b ( 2 ) b^{(2)} b(2): 输出层的偏置向量
- f f f: 激活函数
4.2 计算过程
-
隐藏层的输入:
z ( 1 ) = W ( 1 ) ⋅ x + b ( 1 ) z^{(1)} = W^{(1)} \cdot x + b^{(1)}