【机器学习】BP神经网络正向计算


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


BP神经网络正向计算

1. 引言

反向传播(Backpropagation,简称BP)神经网络是人工神经网络中最常用和最基础的模型之一。虽然BP神经网络以其反向传播算法而闻名,但正向计算同样是网络运行的关键组成部分。本文将详细介绍BP神经网络的正向计算过程,包括其基本原理、数学表示和实现方法。
在这里插入图片描述

2. BP神经网络结构回顾

在深入讨论正向计算之前,让我们先回顾一下BP神经网络的基本结构:

  1. 输入层:接收外部输入信号
  2. 隐藏层:对输入信息进行非线性变换(可以有多个)
  3. 输出层:产生网络的最终输出

每一层都由若干个神经元组成,相邻层之间的神经元通过权重连接。

3. 正向计算的基本原理

BP神经网络的正向计算是指信息从输入层经过隐藏层,最后到达输出层的过程。在这个过程中,每一层的神经元都会接收上一层的输出,进行加权求和,然后通过激活函数产生自己的输出。

正向计算的主要步骤如下:

  1. 输入层接收外部信号
  2. 计算隐藏层的输入和输出
  3. 计算输出层的输入和输出
    在这里插入图片描述

4. 数学表示

为了更好地理解正向计算过程,我们来看一下其数学表示。假设我们有一个三层神经网络(输入层、一个隐藏层、输出层)。

4.1 符号定义

  • x x x: 输入向量
  • W ( 1 ) W^{(1)} W(1): 输入层到隐藏层的权重矩阵
  • b ( 1 ) b^{(1)} b(1): 隐藏层的偏置向量
  • W ( 2 ) W^{(2)} W(2): 隐藏层到输出层的权重矩阵
  • b ( 2 ) b^{(2)} b(2): 输出层的偏置向量
  • f f f: 激活函数

4.2 计算过程

  1. 隐藏层的输入:

    z ( 1 ) = W ( 1 ) ⋅ x + b ( 1 ) z^{(1)} = W^{(1)} \cdot x + b^{(1)}

评论 141
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鑫宝Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值