1. 神经网络
(1)为什么要用神经网络?
对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高。
(2)常用的激活函数及其优缺点
阶跃函数sgn(x)(理想,但不连续,不光滑);
Sigmoid函数(下图左):
优点:能够把输入的连续实值压缩到0到1之间;
缺点:(1)容易饱和,当输入非常大或非常小的时候,神经元的梯度就接近0了,这使得在反向传播算法中反向传播接近于0的梯度,导致最终权重基本没什么更新;(2)Sigmoid的输出不是0均值的,这会导致后层的神经元的输入是非0均值的信号,这会对梯度产生影响,假设后层神经元的输入都为正(e.g. x>0elementwise in f=wTx+b),那么对w求局部梯度则都为正,这样在反向传播的过程中w要么都往正方向更新,要么都往负方向更新,导致有一种捆绑的效果,使得收敛缓慢。
解决方法:注意参数的初始值设置来避免饱和情况。
Tanh函数(下图右):
优点:0均值,能够压缩数据到-1到1之间;
缺点:同Sigmoid缺点第二个,梯度饱和;
ReLU函数</