降维(Dimensionality Reduction)

动机一:数据压缩

第二种的无监督学习——降维。

  1. 降维是什么?
    2降维的概念
    假设我们未知两个的特征 x1:长度:用厘米表示;X2,是用英寸表示同一物体的长度。
    所以,这给了我们高度冗余表示,也许不是两个分开的特征 x1 和 X2,这两个基本的长
    度度量,也许我们想要做的是减少数据到一维,只有一个数测量这个长度。这个例子似乎有
    点做作,这里厘米英寸的例子实际上不是那么不切实际的,两者并没有什么不同。将数据从二维降至一维: 假使我们要采用两种不同的仪器来测量一些东西的尺寸,其中一个仪器测量结果的单位是英寸,另一个仪器测量的结果是厘米,我们希望将测量的结果作为我们机器学习的特征。现在的问题的是,两种仪器对同一个东西测量的结果不完全相等(由于误差、精度等),而将两者都作为 特征有些重复,因而,我们希望将这个二维的数据降至一维。从这件事情我看到的东西发生在工业上的事。如果你有几百个或成千上万的特征,它这往往容易失去你需要的特征。有时可能有几个不同的工程团队,也许一个工程队给你二
    百个特征,第二工程队给你另外三百个的特征,第三工程队给你五百个特征,一千多个特征都在一起,它实际上会变得非常困难,去跟踪你知道的那些特征,你从那些工程队得到的。
    其实不想有高度冗余的特征一样。

降维2
多年我一直在研究直升飞机自动驾驶。诸如此类。如果你想测量——如果你想做,你知道,做一个调查或做这些不同飞行员的测试——你可能有一个特征:X1,这也许是他们的技能(直升机飞行员),也许“X2”可能是飞行员的爱好。这是表示他们是否喜欢飞行,也许这两个特征将高度相关。你真正关心的可能是这条红线的方向,不同的特征,决定飞的
能力。

降维3
将数据从三维降至二维: 这个例子中我们要将一个三维的特征向量降至一个二维的特征向量。过程是与上面类似的,我们将三维向量投射到一个二维的平面上,强迫使得所有的数据都在同一个平面上,降至二维的特征向量。

降维4
这样的处理过程可以被用于把任何维度的数据降到任何想要的维度,如将 1000 维的特征降至 100 维。
正如我们所看到的,最后,这将使我们能够使我们的一些学习算法运行也较晚,但我们会在以后的视频提到它。

动机二:数据可视化

   在许多及其学习问题中,如果我们能将数据可视化,我们便能寻找到一个更好的解决方案,降维可以帮助我们。

数据可视化1
假使我们有有关于许多不同国家的数据,每一个特征向量都有 50 个特征(如,GDP,人均 GDP,平均寿命等)。如果要将这个 50 维的可视化是不可能的。使用降维的方法将其降至 2 维,我们便可以将其可视化了。

数据可视化2
这样做的问题在于,降维的算法只负责减少维数,新产生的特征的意义就必须由我们自己去发现了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值