【趋势分析方法三】MATLAB实现TFPW-MK检验

本文详细介绍了TFPW-MK趋势检验法的原理和MATLAB实现,包括去趋势方法如经验模态分解法(EMD)、一阶差分法(FD)等。TFPW-MK通过Theil-Sen线性去趋势法处理序列自相关性,确保趋势检验的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


目前水文时间序列趋势分析的方法很多,主要分为 参数检验非参数检验两大类:

  • 参数检验中常用的有线性回归法、滑动平均法、累积距平法等
  • 非参数检验则主要包括Mann-Kendal(MK)法和 Spearman 秩次相关法等

虽然从理论上讲,参数检验法较非参数检验可获得更有效的检验结果,但由于水文数据序列存在非同一分布、缺失值或异常值、季节性变化、自相关性等诸多问题,使得参数检验法的使用在水文趋势检验中受到了诸多限制。而非参数检验法凭借其不受样本值分布类型影响等特点,目前已被广泛应用于水文时间序列的趋势检验领域。其中最为常用的检验方法,即Mann-Kendal(MK)法。
利用Mann-Kendall(MK)方法进行水文序列趋势检验时, 去趋势预置白(Trend-free pre-whitening, TFPW) 作为处理水文序列自相关性影响的重要方法之一,其处理过程的合理性及方法的适用性在变化环境下备受关注。

1 原理

在TFPW-MK方法中,为了消除序列自相关性的影响,需要对序列预先进行去趋势处理<

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值